Open Access

Downloads

Download data is not yet available.

Abstract

Uric acid (UA) is a product of the catabolism of purine bases (adenine and guanidine) of nucleic acids that occurs naturally in the human body. The analysis of UA plays an important role in diagnosing and treating diseases such as gout, kidney stones, diabetes, heart disease, and Lesch-Nyhan syndrome. UA is analysed in the laboratory by the enzymatic colorimetric method with a time consuming of approximately one hour. Currently, electrochemical sensors are considered as a potential approach in the rapid quantification of UA due to the advantages of rapid analysis, low cost, few samples required for analysis, compact design and easy to use and do not require highly skilled technicians like traditional analytical methods. In this study, a commercial printed electrode (SPE) was surface-modified with a polyaniline-graphene (PANI-Graphene) composite coating and functionalize the surface of a PANI-Graphene film with a NiO electrochemical catalyst by cyclic voltammetry (CV) method. The fabricated electrode (designated NiO/PANI-Graphene/SPE) was used for UA analysis in a simulated human fluid medium (PBS, pH 7.4). The results show that the NiO/PANI-Graphene/SPE sensor electrode has good electrocatalytic activity for the oxidation of UA in the potential range of 0.3 to 0.5 V. Characteristically, the sensor has a wide linear range in the concentration range of 10 to 1750 μM with a high sensitivity of 29.5 μA mM1 cm2 and a low detection limit of 5.00 μM (S/N = 3). The NiO/PANI-Graphene/SPE sensor electrode has potential applications in the development of non-enzymatic electrochemical sensors for the rapid quantification of UA content in human body fluids.



Author's Affiliation
Article Details

Issue: Vol 7 No 4 (2023): Vol 7(4): Under publishing
Page No.: In press
Published: Nov 19, 2023
Section: Original Research
DOI: https://doi.org/10.32508/stdjns.v7i4.1286

 Copyright Info

Creative Commons License

Copyright: The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 How to Cite
Nguyen, N., Dang, Y., Nguyen, A., Tran, M., & Le, H. (2023). Electrochemical sensor for detection of uric acid using screen-printed electrodes modified with NiO/PANI-Graphene. VNUHCM Journal of Natural Sciences, 7(4), In press. https://doi.org/https://doi.org/10.32508/stdjns.v7i4.1286

 Cited by



Article level Metrics by Paperbuzz/Impactstory
Article level Metrics by Altmetrics

 Article Statistics
HTML = 0 times
Online first   = 0 times
Total   = 0 times