Open Access


Download data is not yet available.


CuFe2O4/cellulose nanocrystal (CuFe2O4/CNC) composite featured high magnetic activity was prepared by a facile and one-pot solvothermal method. Based on the solvothermal condition, nanometer-sized magnetic CuFe2O4 ferrite particles (CuFe2O4 NPs) were directly synthesized and CNC was coated on the surfaces of CuFe2O4 NPs. The composition, structure, morphology, and magnetic property of prepared CuFe2O4/CNC material were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDX), ultraviolet-visible spectroscopy (UV-Vis), and vibrating-sample magnetometer (VSM). FESEM and EDX mapping results showed that CuFe2O4 NPs had a uniform size of 88 nm and were immobilized on the CNC. The catalytic activity of CuFe2O4/CNC was tested in the catalytic reduction of 4-nitrophenol in aqueous solution. After immersion treatment by NaBH4, the CuFe2O4/CNC composite exhibited high catalytic efficiency in reducing 4-nitrophenol to 4-aminophenol. The 4-nitrophenol could be fully reduced in less than 5 minutes. The high catalytic activity was attributed to the easy accessibility of the 4-NP ions by CNC and CuFe2O4 active sites. Owing to its environmental sustainability and being recoverable by magnetic force, CuFe2O4/CNC is suggested to be a promising catalyst with potential applications in wastewater treatment.

Author's Affiliation
Article Details

Issue: Vol 5 No 4 (2021): Vol 5, Issue 4: Under publishing
Page No.: Online first
Published: Sep 24, 2021
Section: Original Research

 Copyright Info

Creative Commons License

Copyright: The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 How to Cite
Vu, A., Le, N. H., Nguyen, N. H., Huynh, B. T., & Le, H. (2021). Magnetic recoverable CuFe2O4/cellulose nanocrystal composite as an efficient catalyst for 4-nitrophenol reduction. Science and Technology Development Journal - Natural Sciences, 5(4), Online first.

 Cited by

Article level Metrics by Paperbuzz/Impactstory
Article level Metrics by Altmetrics

 Article Statistics
HTML = 26 times
Online first   = 5 times
Total   = 5 times

Most read articles by the same author(s)