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TÓM TẮT
Bài báo này trình bày một phương pháp ứng dụng học máy trong dự đoán độ dày của tấm nhôm
dựa trên phổ tia X truyền qua. Ba mô hình được sử dụng bao gồm mạng neuron truyền thẳng
(FNN), mạng neuron tích chập (CNN), và mạng neuron hồi quy (RNN). Thí nghiệm được thực hiện
với nguồn phóng xạ 241Am có tổng hoạt độ khoảng 1776 MBq, dùng để kích thích một mẫu hợp
chất chứa các nguyên tố Zr, Sb và Ba, qua đó tạo ra các tia X đặc trưng tại sáumức năng lượng: 15,78
keV (Zr-Kα ), 17,67 keV (Zr-Kβ ), 26,36 keV (Sb-Kα ), 29,73 keV (Sb-Kβ ), 32,2 keV (Ba-Kα ) và 36,38 keV
(Ba-Kβ ). Các chùm bức xạ này được chuẩn trực và truyền qua các tấm nhôm có độ dày khác nhau
và ghi nhận bằng đầu dò bán dẫn Si(Li). Từ dữ liệu phổ thu được, mối liên hệ giữa sự suy giảm
cường độ tia X và độ dày vật liệu được sử dụng làm dữ liệu để huấn luyệnmô hình và đánh giá khả
năng dự đoán. Đồng thời các siêu tham số được tối ưu hóa nhằm đạt cấu hình hiệu quả nhất. Sau
đó, dữ liệu phổ của các mẫu nhôm có độ dày khác nhau được đưa vào mô hình để kiểm chứng
khả năng dự đoán. Kết quả cho thấy cả ba mô hình FNN, CNN, và RNN đều cho độ chính xác cao
với sai số dự đoán nhỏ hơn 5% so với số liệu tham khảo, qua đó khẳng định tính khả thi của việc
kết hợp học máy với phương pháp truyền qua đa năng lượng trong dự đoán độ dày vật liệu nhôm
và triển vọng ứng dụng trong kiểm tra không phá hủy.
Từ khoá: Tia X truyền qua, FNN, CNN, RNN

MỞĐẦU
Trong bối cảnh công nghiệp hiện đại, kiểm tra không
phá hủy (Non-Destructive Testing, NDT) được xem
là một trong những kỹ thuật quan trọng để đánh giá
chất lượng và độ bền của vật liệu mà không gây ảnh
hưởng đến cấu trúc ban đầu. Một trong những ứng
dụng nổi bật của NDT là xác định độ dày của vật liệu,
đặc biệt đối với nhôm - kim loại được sử dụng phổ
biến trong hàng không, xây dựng và chế tạo. Độ dày
vật liệu không chỉ liên quan trực tiếp đến các đặc tính
cơ học như độ bền, độ cứng hay khả năng chịu lực, mà
còn quyết định khả năng chống ăn mòn, hạn chế biến
dạng và làm chậm quá trình hư hỏng, từ đó góp phẩn
đảm bảo an toàn và kéo dài tuổi thọ của sản phẩm1,2.
Các kỹ thuật sử dụng tia X để xác định độ dày đã được
nghiên cứu và ứng dụng rộng rãi, bao gồm huỳnh
quang tia X (XRF)3, phản xạ tia X (XRR)4 và tia X
truyền qua 5. Trong đó, phương pháp truyền qua với
cấu hình đa mức năng lượng đã cho thấy khả năng
đo độ dày vật liệu một cách chính xác trong dải từ
vài trăm micromet đến vài milimet. Tuy nhiên, cách

tiếp cận phân tích truyền thống như đường cong hiệu
chuẩn (Calibration Curve Fitting, CCF) 5 thường đòi
hỏi nhiều bước xử lý phổ phức tạp và yêu cầu kinh
nghiệm cho các thao tác xử lý, làm hạn chế tính tự
động hóa và giảm tính hiệu quả khi áp dụng trong
lĩnh vực công nghiệp.
Sự phát triển của học máy (Machine Learning) đã mở
ra một hướng tiếp cận mới trong việc xử lý dữ liệu
phức tạp và tìm ra các mối quan hệ phi tuyến. Các
kiến trúc mạng neuron phổ biến như mạng neuron
truyền thẳng (Feedforward Neural Network, FNN),
mạng neuron tích chập (Convolutional Neural Net-
work, CNN) và mạng neuron hồi quy (Recurrent
Neural Network, RNN) đã được ứng dụng thành công
trong nhiều lĩnh vực, từ xử lý hình ảnh 6, phân tích
phổ7, đến xử lý chuỗi thời gian8,9. Trong nghiên
cứu phổ gamma và tia X, nhiều công trình trước
đây5,10–12 đã cho thấy tiềm năng của việc ứng dụng
mạng neuron nhân tạo (Artificial Neural Network,
ANN) trong dự đoán độ dày vật liệu với độ chính xác
cao. FNN và CNN có thể tái tạo quá trình phân tích
phổ bằng cách nhận diện các đỉnh phổ, phân biệt tín
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hiệu từ nền và xác định các đặc tính quan trọng. Đặc
biệt, CNN cho thấy ưu thế trong việc xử lý cấu trúc
không gian của phổ, trong khi RNN phù hợp hơn với
dữ liệu chuỗi. Những kết quả này gợi mở triển vọng
ứng dụng học máy trong dự đoán độ dày vật liệu từ
phổ tia X.
Bài báo này tập trung vào việc đánh giá hiệu quả của
ba mô hình học máy FNN, CNN, và RNN trong việc
dự đoán độ dày củamẫu nhômmỏng dựa trên phổ tia
X truyền qua đa năng lượng. Các mô hình được huấn
luyện và tối ưu hóa dựa trên dữ liệu phổ thực nghiệm,
với mục tiêu nâng cao độ chính xác và tính khả thi
trong kiểm tra không phá hủy. Những kết quả thu
được kỳ vọng sẽ đóng góp vào phát triển các phương
pháp đo lường tiên tiến, đáp ứng yêu cầu ngày càng
cao của các ngành công nghiệp hiện đại.

MẠNGNEURONNHÂN TẠO (ANNS)
Mạng neuron nhân tạo làmộtmôhình tính toán được
phát triển dựa trên nguyên lý mô phỏng hoạt động
hoạt động của hệ thần kinh sinh học, trong đó các
đơn vị xử lý thông tin (neuron) liên kết với nhau để
thực hiện các phép biến đổi tín hiệu. ANNs được
thiết kế để học và biểu diễn cácmối quan hệ phi tuyến
phức tạp giữa đầu vào và đầu ra, từ đó thực hiện các
nhiệm vụ như phân loại, hồi quy, nhận dạng mẫu, và
dự đoán. Bài báo trình bày sự phát triển ba kiến trúc
khác nhau củaANNs, bao gồmmôhìnhmạng neuron
truyền thẳng (FNN), mạng neuron tích chập 1D (1D-
CNN, gọi tắt là CNN) và mạng neuron hồi quy dựa
trên bộ nhớ dài hạn ngắn hạn (LSTM-RNN, gọi tắt là
RNN) để dự đoán độ dày của các tấm nhôm phẳng.

Mạng neuron truyền thẳng
Mạng neuron truyền thẳng là một dạng kiến trúc cơ
bản và phổ biến nhất củamạngneuronnhân tạo, được
ứng dụng rộng rãi trong nhiều bài toán họcmáy. Kiến
trúc của mạng neuron truyền thẳng bao gồmmột lớp
đầu vào, một hoặc nhiều lớp ẩn và một lớp đầu ra.
Mỗi lớp trong mạng chứa các nút (neuron) đóng vai
trò là đơn vị cơ bản để xử lý thông tin củamạng. Ở các
lớp ẩn, các neuron được kết nối đầy đủ với các neuron
của lớp trước và lớp sau thông qua các trọng số. Trong
quá trình xử lý, mỗi neuron thực hiện phép tính tổng
có trọng số của các tín hiệu nhận được, cộng với một
hệ số hiệu chỉnh, sau đó biến đổi giá trị này qua một
hàm kích hoạt phi tuyến (như ReLU, sigmoid, tanh
hoặc softsign) để tạo đầu ra mới. Nhờ cơ chế này, các
lớp ẩn có khả năng học và mô hình hóa các quan hệ
phi tuyến giữa dữ liệu đầu vào và đại lượng dự đoán.
Đặc trưng nổi bật của mô hình FNN là tín hiệu được
lan truyền theomột chiều: dữ liệu xuất phát từ lớp đầu
vào, được xử lý lần lượt qua các lớp ẩn và cuối cùng

được đưa đến lớp đầu ra để tạo ra giá trị dự đoán. Do
không có cơ chế hồi tiếp, mạng chỉ cho phép thông tin
di chuyển theo hướng duy nhất này, tạo nên đặc trưng
“truyền thẳng” của mô hình.

Mạng neuron tích chập 1D
Mạng neuron tích chập là một trong những kiến trúc
mạnh mẽ trong mạng neuron nhân tạo, được phát
triển nhằm xử lý hiệu quả dữ liệu chuỗi một chiều.
CNN vận hành dựa trên cơ chế tích chập, trong đó
các bộ lọc được dịch chuyển dọc theo trục chuỗi để
trích xuất các đặc trưng cục bộ. Đây là một kiến trúc
”trích xuất đặc trưng” đơn giản nhưng hiệu quả, với
khả năng tự động học các mẫu đặc trưng quan trọng
trong dữ liệu mà không yêu cầu thiết kế đặc trưng thủ
công.
Kiến trúc của CNN bao gồmmột lớp đầu vào, các lớp
tích chập, các lớp gộp, và cuối cùng là lớp kết nối đầy
đủ. Ở lớp đầu vào, dữ liệu được đưa vào dưới dạngma
trận một chiều. Các lớp tích chập đảm nhiệm vai trò
trích xuất các đặc trưng cục bộ từ chuỗi dữ liệu thông
qua việc áp dụng các bộ lọc được trượt qua chuỗi.
Mỗi bộ lọc có kích thước xác định trước và sẽ học các
thông tin quan trọng trong chuỗi. Các lớp gộp thường
được đặt ngay sau lớp tích chập để giảm kích thước dữ
liệu, giữ lại các đặc trưng quan trọng và giảm độ phức
tạp tính toán. Phương pháp gộp trong nghiên cứu này
là lấy giá trị cực đại trongmột vùng. Sau các bước tích
chập và gộp, dữ liệu được làm phẳng thành một vec-
tor một chiều và chuyển đến lớp kết nối đầy đủ, nơi
mỗi neuron kết hợp toàn bộ đặc trưng đã học thông
qua các phép tính trọng số và hàm kích hoạt (ReLU,
sigmoid, softmax) để tạo ra đầu ra cuối cùng của mô
hình. Nhờ chuỗi xử lý này, CNN tạo ra một biểu diễn
súc tích nhưng giàu thông tin về dữ liệu ban đầu, hỗ
trợ hiệu quả cho các nhiệm vụ dự đoán và phân loại.

Mạng neuron hồi quy dựa trên bộ nhớ dài
hạn ngắn hạn
RNN là một kiến trúc học sâu tiên tiến, được thiết kế
nhằm để xử lý dữ liệu chuỗi. Khác với các mô hình
truyền thống, RNN có khả năng lưu trữ và sử dụng
thông tin từ các bước trước đó trong chuỗi, giúp mô
hình nhận diện được các mối quan hệ phụ thuộc theo
thời gian dữ liệu. Đây là một kiến trúc hồi quy với cơ
chế ghi nhớ và quên, cho phép xử lý cả thông tin cục
bộ lẫn toàn cục trong chuỗi dữ liệu.
Kiến trúc của RNN bao gồm một lớp đầu vào, một
hoặc nhiều lớp bộ nhớ thời gian ngắn hạn dài hạn
(LSTM), và một lớp đầu ra. Lớp đầu vào tiếp nhận
chuỗi dữ liệu và chuyển thông tin đến các lớp LSTM.
Lớp LSTM đóng vai trò là thành phần trung tâm của
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mô hình, được cấu trúc với các ô nhớ và các cổng để
kiểm soát luồng thông tin. Nhờ vào cơ chế này, LSTM
có thể học và duy trì các mối quan hệ phụ thuộc dài
hạn trong chuỗi dữ liệu, đồng thời bỏ qua những phần
thông tin không cần thiết. Lớp đầu ra của RNN nhận
thông tin từ lớp LSTM cuối cùng và đưa ra dự đoán.
RNN hoạt động dựa trên cơ chế hồi quy theo thời
gian, cho phép dữ liệu từ các bước trước trong chuỗi
được truyền trở lại mô hình để học các mối quan hệ
liên thời gian. Tại mỗi bước thời gian, mô hình nhận
đầu vào từ bước hiện tại, kết hợp với thông tin được
lưu trữ từ các bước trước, và quyết định phần thông
tin nào cần giữ lại hoặc loại bỏ.
Trong cả ba mô hình, lớp đầu vào được thiết kế với
4330 neuron, mỗi neuron biểu diễnmột giá trị số đếm
tại từng kênh trên vùng phổ tia X quan tâm. Lớp đầu
ra chứa một neuron, có nhiệm vụ dự đoán độ dày.
Quá trình huấn luyện cácmạngneuronnhân tạo được
thực hiện thông qua việc điều chỉnh các trọng số và hệ
số điều chỉnh thông qua thuật toán tối ưu hóa, nhằm
giảm thiểu sự khác biệt giữa giá trị dự đoán và giá trị
thực tế. Sự khác biệt này được đo lường bằng hàmmất
mát MSE (Mean Squared Error). Sau khi tính toán
giá trị mất mát, quá trình truyền ngược (backpropa-
gation) được áp dụng để tính toán độ dốc (gradient)
của hàm mất mát đối với từng trọng số trong mạng,
từ đó cập nhật các trọng số và hệ số điều chỉnh theo
hướng giảm sai số dự đoán. Trong nghiên cứu này,
thuật toán tối ưu hóa ADAM (Adaptive Moment Es-
timation)13 được áp dụng để nâng cao hiệu quả huấn
luyện. ADAM cập nhật trọng số dựa trên sự kết hợp
giữa trung bình động của gradient và bình phương
gradient, giúp quá trình tối ưu diễn ra ổn định và
giúp hàmmất mát giảm đều qua các vòng huấn luyện
(epoch). Nhờ đó, mô hình đạt được độ chính xác dự
đoán cao hơn và học được các mối quan hệ phức tạp
có trong dữ liệu phổ.
Đánh giá hiệu suất của các mô hình học máy là bước
quan trọng nhằm đảm bảo độ chính xác và độ tin cậy
các kết quả dự đoán. Ba mô hình được kiểm định
bằng các chỉ số đánh giá thông dụng bao gồm MSE,
RMSE, MAPE và hệ số tương quan R2.
Các chỉ số này được định nghĩa như sau:
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∑
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Ở đây dre f
i và dpred

i là độ dày tham khảo và độ dày dự
đoán của mẫu thứ i; dpred là giá trị trung bình của tất
cả độ dày dự đoán và n là số mẫu.

VẬT LIỆU VÀ PHƯƠNG PHÁP
Vật liệu
Bộ ba nguồn bức xạ 241Am có tổng hoạt độ khoảng
1776MBq phát ra tia gamma có năng lượng 59,54 keV
được dùng để kích thích các nguyên tố trongmẫu oxit
(bao gồm ZrO2, Sb2O3 và BaSO4). Quá trình kích
thích tạo ra các tia X huỳnh quang đặc trưng có năng
lượng 15,78 keV (Zr-Kα ), 17,67 keV (Zr-Kβ ), 26,36
keV (Sb-Kα ), 29,73 keV (Sb-Kβ ), 32,2 keV (Ba-Kα )
và 36,38 keV (Ba-Kβ ). Chùm tia X được định hướng
truyền qua các mẫu nhôm có độ dày thay đổi trong
khoảng từ 0,051 cm đến 1,154 cm. Cường độ của
chùm tia X bị suy giảm khi truyền qua mẫu đo và
được ghi lại bởimột đầu dò bán dẫn Si(Li), có độ phân
giải 157 eV tại năng lượng 5,9 keV. Bố trí thí nghiệm
được mô tả chi tiết trong nghiên cứu trước đây của
chúng tôi5. Phổ năng lượng được thu nhận với 8192
kênh, trong đó vùng phổ từ kênh 2402 đến kênh 6731
(tương ứng với 4330 kênh) bao phủ toàn bộ các đỉnh
huỳnh quang Kα và Kβ của các nguyên tố Zr, Sb và
Ba. Mỗi phần tử trong phổ đại diện cho số đếm pho-
ton tương ứng với một khoảng năng lượng xác định.
Dữ liệu số đếm trong vùng kênh này được trích xuất
để tạo thành tập dữ liệu đầu vào cho các mô hình học
máy.

Thu thập dữ liệu
Bài báo này sử dụng lại các dữ liệu thực nghiệm đã
được công bố trong nghiên cứu trước đây5. Dữ liệu 
bao gồm phổ tại 95 mức độ dày khác nhau của tấm 
nhôm. Ứng với mỗi giá trị độ dày, phép đo được lặp 
lại ba lần, và mỗi lần đo có thời gian ghi nhận là 10800 
s. Như vậy, tổng số phổ thực nghiệm thu được là 285 
phổ. Các dữ liệu này được phân chia thành ba tập con:
tập huấn luyện, tập xác thực và tập kiểm tra. Mỗi tập 
con đảm nhiệm một chức năng riêng trong quá trình 
xây dựng mô hình. Trong đó, tập huấn luyện được sử 
dụng như nguồn dữ liệu chính để mô hình học các 
đặc trưng của phổ và thiết lập quan hệ giữa độ dày 
và tín hiệu ghi nhận. Tập huấn luyện bao gồm 135 
phổ tương ứng với 45 độ dày mẫu. Tập xác thực được
sử dụng để điều chỉnh các siêu tham số của mô hình,
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Bảng 1: Độ dàymẫu nhôm ứng với các tập dữ liệu 5

Độ dày (cm)

Huấn luyện Xác thực Thử nghiệm

0,051(1) 0,366(2) 0,581(3) 0,880(5) 0,131(2) 0,896(5) 0,064(1) 0,395(2) 0,803(4)

0,080(1) 0,379(2) 0,590(4) 0,925(4) 0,160(1) 1,023(5) 0,098(1) 0,413(2) 0,829(4)

0,115(2) 0,408(2) 0,637(5) 0,952(6) 0,211(2) 1,120(7) 0,144(2) 0,459(3) 0,845(4)

0,149(2) 0,426(3) 0,661(3) 0,989(5) 0,253(2) 0,162(2) 0,493(3) 0,867(5)

0,178(2) 0,450(2) 0,674(4) 1,040(6) 0,293(4) 0,195(3) 0,530(3) 0,885(5)

0,202(1) 0,475(2) 0,694(4) 1,069(6) 0,346(3) 0,213(3) 0,563(2) 0,918(6)

0,224(2) 0,488(3) 0,757(4) 1,087(6) 0,392(3) 0,229(3) 0,573(3) 0,927(5)

0,248(1) 0,501(3) 0,787(4) 1,138(7) 0,442(3) 0,242(3) 0,597(3) 0,965(6)

0,275(3) 0,526(3) 0,816(4) 1,154(7) 0,517(2) 0,266(2) 0,627(3) 1,016(7)

0,282(2) 0,539(3) 0,838(5) 0,610(3) 0,299(2) 0,666(4) 1,056(6)

0,304(3) 0,555(3) 0,856(6) 0,725(5) 0,315(1) 0,717(5) 1,074(6)

0,328(2) 0,568(3) 0,863(4) 0,821(4) 0,351(3) 0,765(3)

Chú thích: 0,051(1) có nghĩa là 0,051± 0,001.

đồng thời giúp hạn chế tình trạng quá khớp (over fit-
ting). Tập dữ liệu này bao gồm 45 phổ được tách hoàn
toàn khỏi tập huấn luyện. Các dữ liệu này không được
sử dụng trực tiếp trong quá trình đào tạo mà đóng
vai trò là điểm kiểm tra để đánh giá hiệu suất của mô
hình. Điều này giúp đảm bảo rằng mô hình phù hợp
tốt với dữ liệu mới. Tập kiểm tra được sử dụng sau
khi mô hình ANNs đã được đào tạo đầy đủ để đánh
giá hiệu suất cuối cùng. Tập dữ liệu này bao gồm 105
phổ tương ứng với 35 độ dàymẫu. Việc phân chia này
bảo đảm rằng mỗi độ dày chỉ xuất hiện trong một tập
dữ liệu duy nhất, qua đó loại bỏ hiện tượng rò rỉ dữ
liệu và duy trì tính độc lập giữa các tập dữ liệu. Giá
trị độ dày và độ không đảm bảo của các dữ liệu trong
từng tập con được trình bày trong Bảng 1.

KẾT QUẢ VÀ THẢO LUẬN

Tối ưu hóa các mô hình

Tối ưu hóa mô hình là quá trình lựa chọn các siêu
tham số phù hợp nhằm cải thiện hiệu suất dự đoán
của mô hình học sâu. Các siêu tham số này bao gồm
số lượng lớp ẩn, số lượng neuron trong mỗi lớp ẩn,
hàm kích hoạt, tốc độ học (learning rate), kích thước
lô (batch size) và số vòng lặp (epochs). Việc lựa chọn
các siêu tham số hợp lý giữ vai trò quan trọng trong
khả năng hội tụ của mô hình và độ chính xác cuối
cùng. Tuy nhiên, quá trình tìm kiếm các siêu tham
số tối ưu thường tốn nhiều thời gian và yêu cầu tài
nguyên tính toán đáng kể.

Trong nghiên cứu này, phương pháp tìm kiếm ngẫu
nhiên (Random Search)14 được sử dụng để xác định
tổ hợp siêu tham số phù hợp cho các mô hình được
khảo sát. Cách tiếp cận này được chọn dựa trên ba
tiêu chí là: i/ quy mô không gian siêu tham số lớn; ii/
giới hạn tài nguyên tính toán; và iii/ nhu cầu đánh giá
hiệu quả của nhiều mô hình khác nhau trong cùng
một dữ liệu. Phương pháp tìm kiếm ngẫu nhiên cho
phép khảo sát không gian siêu tham số một cách tiết
kiệm, thay vì kiểm tra toàn bộ các tổ hợp có thể,
phương pháp này lựa chọn ngẫu nhiên một tập hợp
giá trị, qua đó giảm đáng kể thời gian và chi phí tính
toán. Đồng thời, nó vẫn đảm bảo khả năng tìm ra các
siêu tham số tốt nhất, góp phần cải thiện hiệu suất của
mô hình.
Cụ thể, quá trình tìm siêu tham số tối ưu được thực
hiện 20 lần chomô hình FNN, 50 lần cho cácmô hình
CNN và RNN. Trong mỗi lần thực hiện, một tổ hợp
siêu tham số được chọn ngẫu nhiên từ không gian tìm
kiếm đã xác định trước, sau đó hiệu suất của mô hình
với tổ hợp này được đánh giá trên tập xác thực. Quá
trình lựa chọn hàm kích hoạt và tối ưu hóa các siêu
tham số được định hướng bởimục tiêu giảm thiểu các
chỉ số đánh giá thống kê như MSE, RMSE và MAPE.
Cấu hình cho kết quả tốt nhất được giữ lại và sử dụng
trong quá trình huấn luyện chính thức của mô hình;
kết quả chi tiết được trình bày trong Hình 1 và Bảng
2.
Bảng 3 cung cấp các chỉ số đánh giá hiệu suất của ba
mô hình (FNN, CNN, RNN) trên tập huấn luyện và
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Bảng 2: Giá trị của các siêu tham số trongmô hình FNN, CNN và RNN tối ưu [Nguồn: nhóm tác giả]

Mô hình FNN Mô hình CNN Mô hình RNN

Lớp ẩn thứ 1:
Số neuron: 150
Hàm kích hoạt: Sigmoid
Lớp ẩn thứ 2:
Số neuron: 50
Hàm kích hoạt: Softsign
Lớp ẩn thứ 3:
Số neuron: 32
Hàm kích hoạt: ReLU
Tốc độ học: 0,003241
Kích thước lô: 32
Số vòng lặp: 300

Lớp tích chập thứ 1:
Số bộ lọc (filters): 32
Kích thước kernel: 5
Kích thước pooling: 2
Hàm kích hoạt: ReLU
Lớp tích chập thứ 2:
Số bộ lọc (filters): 64
Kích thước kernel: 5
Kích thước pooling: 2
Hàm kích hoạt: ReLU
Lớp tích chập thứ 3:
Số bộ lọc (filters): 128
Kích thước kernel: 5
Kích thước pooling: 1
Hàm kích hoạt: ReLU
Lớp kết nối:
Số neuron: 64
Hàm kích hoạt: Sigmoid
Tốc độ học: 0,001006
Kích thước lô: 32
Số vòng lặp: 300

Lớp LSTM 1:
Số neuron: 150
Hàm kích hoạt: Tanh
Lớp LSTM 2:
Số neuron: 50
Hàm kích hoạt: Sigmoid
Lớp kết nối:
Số neuron: 128
Hàm kích hoạt: Softsign
Tốc độ học: 0,006388
Kích thước lô: 32
Số vòng lặp: 300

Bảng 3: Các chỉ số MSE, RMSE, MAPE và R2 tương ứng với các mô hình tối ưu [Nguồn: nhóm tác giả]

Chỉ số FNN CNN RNN

Tập huấn
luyện

MSE 0,0000024 0,0000046 0,0000016

RMSE 0,00154 0,00214 0,00126

MAPE 0,18762 0,28916 0,18029

R 0,99995 0,99990 0,99997

Tập xác thực MSE 0,0000085 0,0000071 0,0000075

RMSE 0,00291 0,00267 0,00274

MAPE 0,33082 0,34033 0,30734

R 0,99982 0,99985 0,99984

tập xác thực. Về chỉ số MSE, mô hình RNN đạt hiệu
suất tốt nhất trên tập huấn luyện với giá trị MSE thấp
nhất (0,0000016), cho thấy khả năng học và ghi nhớ
dữ liệu rất tốt. Tuy nhiên, trên tập xác thực, mô hình
CNN lại cóMSE thấp nhất (0,0000071), phản ánh khả
năng tổng quát hóa vượt trội, phù hợp với nghiên cứu
trước đây15về khả năng trích xuất đặc trưng hiệu quả
của CNN và khả năng hoạt động ổn định trên dữ liệu
có cấu trúc tuyến tính một chiều. Dù phổ tia X không
mang tính chuỗi thời gian theo nghĩa truyền thống,
tính liên tục theo năng lượng vẫn cho phép CNN phát
huy ưu thế trong việc học hình dạng và cấu trúc phổ.
Tương tự, các chỉ số RMSE trên tập huấn luyện cho
thấy RNN có giá trị thấp nhất (0,00126), sau đó là
FNN và CNN. CNN tiếp tục có RMSE tốt nhất trên

tập xác thực (0,00267), cho thấy khả năng dự đoán 
chính xác và chống quá khớp (overfitting) hiệu quả 
hơn.
Về chỉ số MAPE, RNN duy trì hiệu suất dự đoán tốt 
nhất cả trên tập huấn luyện (0,18029) và tập xác thực
(0,30734), cho thấy khả năng xử lý mối quan hệ thời 
gian mạnh mẽ. Tuy nhiên, có nguy cơ quá khớp khi 
hiệu suất trên tập xác thực không vượt trội như CNN. 
Cuối cùng, chỉ số R2 phản ánh khả năng giải thích 
biến thiên dữ liệu. Trên tập huấn luyện, RNN đạt R2

cao nhất (0,99997), nhưng CNN lại có R2 tốt nhất trên 
tập xác thực (0,99985), chứng tỏ khả năng khái quát 
hóa tốt của mô hình CNN.
Như vậy, RNN thể hiện khả năng học sâu mạnh mẽ
nhưng gặp rủi ro quá khớp, trong khi CNN cho thấy
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Hình 1: Các mô hình họcmáy tối ưu của a) FNN,
 b) CNN và c) RNN [Nguồn: nhóm tác giả]

hiệu suất tổng quát hóa tốt hơn trên dữ liệu mới.
FNN, dù có hiệu suất ổn định, không vượt trội trong
việc xử lý các đặc trưng phức tạp như haimô hình còn
lại.

Dự đoán độ dàymẫu nhôm
Ba mô hình học máy gồm FNN, CNN và RNN đã
được triển khai để dự đoán độ dày của tấm nhôm
thông qua phương pháp phổ tia X truyền qua, với các
tham số tối ưu được trình bày trong Bảng 2. Mục tiêu
chính là đánh giá khả năng dự đoán và mức độ tổng
quát hóa của từng mô hình thông qua so sánh độ sai
biệt giữa giá trị dự đoán và giá trị tham khảo.
Các kết quả dự đoán, được minh họa trong Hình 2,
cho thấy cả ba mô hình đều có khả năng dự đoán
chính xác độ dày nhôm, với sự phù hợp cao giữa
giá trị dự đoán và giá trị tham khảo. Dựa trên các
chỉ số thống kê và độ lệch tương đối (RD) trình bày
trong Hình 3 và Bảng 4, có thể nhận thấy độ lệch cực
đại của FNN, CNN và RNN lần lượt là 4,66%, 3,44%
và 4,72%, trong khi độ lệch trung bình tương ứng là
1,22%, 0,92% và 0,85%. Như vậy, cácmô hình đều đạt
sai số dự đoán dưới 5%, đáp ứng yêu cầu về độ chính
xác trong các ứng dụng đo lường thực tiễn.
Môhình FNN:Các chỉ sốMSE, RMSE vàMAPE trên
cả hai tập huấn luyện và xác thực đều cao hơn so với
CNN và RNN, phản ánh hạn chế của FNN khi phải
xử lý các dữ liệu phức tạp. Do đó, FNN có thể phù

Hình 2: So sánh độ dày tham khảo với độ dày dự
đoán từ mô hình FNN, CNN và RNN [Nguồn: nhóm
tác giả]

Hình3: Phânbốđộ lệch tươngđối củamôhìnhFNN,
CNN và RNN so với giá trị tham khảo [Nguồn: nhóm
tác giả]
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Bảng 4: Các chỉ số thống kê và độ lệch tương đối của các mô hình FNN, CNN và RNN [Nguồn: nhóm tác giả]

Chỉ số FNN CNN RNN

MSE 0,0000133 0,0000112 0,0000115

RMSE 0,00365 0,00335 0,00340

MAPE 0,43280 0,45823 0,42220

R 0,99973 0,99977 0,99976

Độ lệch tương đối cực đại (%) 4,66 3,44 4,72

Độ lệch tương đối trung bình
(%)

1,22 0,92 0,85

hợp hơn với các bài toán có đặc trưng đơn giản hoặc
ít yêu cầu về sự tinh vi trong mô hình hóa.
Mô hình CNN: CNN chứng tỏ khả năng tổng quát
hóa tốt nhất, thể hiện qua giá trị MSE thấp nhất trên
tập xác thực (0,0000071), RMSE thấp nhất (0,00267)
và độ lệch tương đối thấp nhất (3,44% cực đại, 0,92%
trung bình). Mặc dù MAPE trên tập huấn luyện cao
hơn RNN, nhưng CNN vẫn chứng minh được tính
ổn định, khả năng chống quá khớp (overfitting) hiệu
quả và khả năng trích xuất đặc trưng tối ưu, khiến nó
trở thành lựa chọn phù hợp nhất cho các bài toán dự
đoán độ dày nhôm trong điều kiện thực tế.
Mô hình RNN: RNN có ưu thế trong việc học và ghi
nhớ các mối quan hệ thời gian, thể hiện qua MSE
thấp nhất trên tập huấn luyện (0,0000016) và RMSE
thấp nhất (0,00126). Tuy nhiên, trên tập xác thực,
RNNkhông đạt hiệu suất tổng quát hóa tốt nhưCNN,
với độ lệch tương đối cực đại lên tới 4,72%, cho thấy
nguy cơ quá khớp (overfitting) nếu không được điều
chỉnh phù hợp. Dù vậy, với độ chính xác cao (MAPE:
0,4222%), RNN vẫn cho thấy hiệu suất dự đoán tốt.
Tuy nhiên, phổ tia X là một tín hiệu một chiều có trật
tự theo năng lượng - tương tự chuỗi thời gian nhưng
không mang yếu tố thời gian thực. Do đó, hiệu quả
của RNN trong bài toán này có thể không đến từ khả
năng khai thác thông tin theo thời gian, mà chủ yếu
xuất phát từ khả năng học các mối liên hệ phi tuyến
và dài hạn giữa các vùng năng lượng trong phổ.
Điểm đáng chú ý là cácmô hình được huấn luyện trực
tiếp trên phổ truyền qua đo thực nghiệm, trong đó tín
hiệu chứa các thăng giáng thống kê số đếm photon,
nhiễu điện tử của hệ đo, và biến thiên cường độ phát
xạ của nguồn phóng xạ. Tập dữ liệu này phản ánh
các đặc trưng nhiễu và biến thiên thường gặp trong
phép đo phổ, qua đó cho phép đánh giá độ ổn định
của mô hình. Trong các điều kiện đó, cả ba mô hình
vẫn duy trì sai số thấp và ổn định, khẳng định tiềm
năng tích hợp mô hình này vào các hệ thống đo phổ
trực tuyến hoặc thiết bị kiểm tra không phá hủy, nơi
yêu cầu đồng thời độ chính xác và tốc độ xử lý cao.

So sánh với nghiên cứu 5, cả hai cùng sử dụng bộ dữ 
liệu phổ tia X truyền qua nhưng mục tiêu và hướng 
tiếp cận mô hình hóa là hoàn toàn khác biệt: nghiên
cứu 5 tập trung đánh giá khả năng dự đoán độ dày đối 
với một mô hình cụ thể, trong khi nghiên cứu này so 
sánh hiệu suất của ba kiến trúc học sâu. Dù độ lệch 
tương đối cực đại trong nghiên cứu này cao hơn (dưới
5%) so với kết quả trong nghiên cứu 5 (khoảng 3%), 
độ lệch trung bình vẫn duy trì ở mức rất thấp (dưới 
1,3%) và các mô hình thể hiện tính ổn định cao trên 
tập kiểm tra. Việc sử dụng phổ thô không qua xử lý 
đặc trưng cùng khả năng tổng quát hóa tốt cho thấy 
hướng tiếp cận hiện tại mang tính mở rộng cao, phù 
hợp với các ứng dụng thực tế khi phổ có thể biến đổi 
hình dạng hoặc chứa nhiễu. Do đó, hai nghiên cứu 
cần được nhìn nhận như các định hướng bổ sung cho 
nhau, kết quả của nghiên cứu này tiếp tục khẳng định 
tính hiệu quả của mô hình học sâu trong phân tích 
phổ tia X truyền qua.
Về mặt hiệu suất tính toán, nghiên cứu chưa tiến hành 
đo định lượng cụ thể thời gian huấn luyện và dự đoán. 
Tuy nhiên, dựa trên đặc trưng kiến trúc có thể nhận 
định rằng FNN có thời gian huấn luyện ngắn nhất do 
cấu trúc đơn giản; CNN yêu cầu thời gian trung bình 
vì bao gồm các tầng tích chập và trích xuất đặc trưng;
trong khi RNN có thời gian huấn luyện dài nhất do cơ 
chế lan truyền ngược qua chuỗi. Việc bổ sung đánh 
giá định lượng thời gian tính toán sẽ được xem xét 
trong các nghiên cứu tiếp theo để hoàn thiện hơn việc
so sánh toàn diện giữa các mô hình.

KẾT LUẬN
Nghiên cứu này giới thiệu và triển khai thành công ba 
kiến trúc học máy FNN, CNN, và RNN để dự đoán 
độ dày của vật liệu nhôm dựa trên dữ liệu phổ tia X 
truyền qua đa năng lượng. Các mô hình đã được tối 
ưu hóa cả về cấu trúc lẫn siêu tham số, nhằm đảm bảo 
khả năng xử lý hiệu quả các dữ liệu phức tạp và phát 
hiện các mối quan hệ phi tuyến một cách chính xác.
Kết quả so sánh giữa giá trị tham khảo và giá trị dự
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đoán từ các mô hình cho thấy độ chính xác cao, với
độ lệch tương đối dưới 5% trong tất cả các trường hợp.
Các chỉ số thống kê như MSE, RMSE, MAPE và R2

đều đạt giá trị rất tốt, minh chứng cho khả năng dự
đoán đáng tin cậy và tính hiệu quả của các mô hình
học máy được phát triển. Đặc biệt, CNN và RNN thể
hiện ưu thế trong việc xử lý dữ liệu phổ, với độ lệch
tương đối trung bình giữa giá trị dự đoán và giá trị
tham khảo thấp lần lượt là 0,92% và 0,85%. Điều này
khẳng định khả năng của CNN trong việc trích xuất
các đặc trưng không gian và của RNN trong việc nắm
bắt các quan hệ thời gian trong dữ liệu.
Những kết quả thu được không chỉ khẳng định tính
khả thi và hiệu quả của các mô hình học máy trong
việc dự đoán độ dày vật liệu nhôm mà còn mở ra
triển vọng lớn cho việc ứng dụng các phương pháp
này trong kiểm tra không phá hủy. Với khả năng dự
đoán chính xác và hiệu suất cao, các mô hình FNN,
CNN, và RNN có thể được mở rộng ứng dụng cho
nhiều loại vật liệu khác, góp phần nâng cao độ tin cậy
và hiệu quả trong các quy trình kiểm tra công nghiệp
và nghiên cứu khoa học. Bên cạnh đó, các mô hình
học máy nêu trên đều có thời gian tính toán nhanh,
do đó rất phù hợp để xử lý khối lượng lớn dữ liệu
trong thời gian ngắn cũng như trong các ứng dụng
phân tích thời gian thực. Kết quả này tạo nền tảng
cho các hướng nghiên cứu tiếp theo nhằm hoàn thiện
thuật toán, tối ưu hóa mô hình và mở rộng ứng dụng
học máy trong phân tích phổ và kiểm tra chất lượng
vật liệu.

DANHMỤC TỪ VIẾT TẮT
ANN: Mạng neuron nhân tạo
FNN: Mạng neuron truyền thẳng
CNN: Mạng neuron tích chập
RNN: Mạng neuron hồi quy
MSE: Trung bình bình phương sai số
RMSE: Căn bậc hai của trung bình bình phương sai
số
MAPE: Sai số phần trăm trung bình tuyệt đối
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ABSTRACT
This study presents a machine-learning approach for predicting the thickness of aluminum plates
usingmulti-energy X-ray transmission spectra. Three neural network architectures are investigated,
including a Feedforward Neural Network (FNN), a Convolutional Neural Network (CNN) and a Re-
current Neural Network (RNN). The experiment setup employs a 241Am radioactive source with a
total activity of approximately 1776 MBq to excite a composite target containing Zr, Sb, and Ba,
thereby generating six characteristic X-ray lines at 15.78 keV (Zr–Kα ), 17.67 keV (Zr–Kβ ), 26.36 keV
(Sb–Kα ), 29.73 keV (Sb–Kβ ), 32.2 keV (Ba–Kα ), and 36.38 keV (Ba–Kβ ). The collimated radiation
beams are transmitted through aluminum samples of varying thicknesses, and the resulting spec-
tra are recorded using a Si(Li) semiconductor detector. From themesured spectral, the attenuation
behaviour of X-ray intensity as a function of material thickness is extracted and used to train and
evaluate the machine-learning models. The hyperparameters are subsequently optimized to ob-
tain the most effective model configuration. After optimization, transmission spectra correspond-
ing to aluminum samples of various thicknesses are input into the models to further validate their
prediction capability. The results show that all three architectures - FNN, CNN, and RNN - achieve
high predictive accuracy, with relative errors below 5% compared with the reference values. Such
results confirm the effectiveness of integrating machine-learning techniques with multi-energy X-
ray transmission for the quantitative determination of aluminum thickness and demonstrate the
potential of this approach for practical non-destructive testing applications.
Key words: X-ray transmission, FNN, CNN, RNN
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