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Estimation of a fold convolution in 

additive noise model with compactly 

supported noise density 
 

Cao Xuan Phuong 

 

Abstract – Consider the model  Y X Z , 

where Y  is an observable random variable, X  

is an unobservable random variable with 

unknown density f , and Z  is a random noise 

independent of X . The density g  of Z  is 

known exactly and assumed to be compactly 

supported. We are interested in estimating the 

m - fold convolution   
m

f f f  on the basis 

of independent and identically distributed 

(i.i.d.) observations 
1
, ,

n
Y Y  drawn from the 

distribution of Y . Based on the observations as 

well as the ridge-parameter regularization 

method, we propose an estimator for the 

function 
m

f  depending on two regularization 

parameters in which a parameter is given and a 

parameter must be chosen. The proposed 

estimator is shown to be consistent with respect 

to the mean integrated squared error under 

some conditions of the parameters. After that 

we derive a convergence rate of the estimator 

under some additional regular assumptions for 

the density f . 

Index Terms – estimator, compactly supported 

noise density, convergence rate 

1  INTRODUCTION 

n this paper, we consider the additive noise         

model  
Y X Z         (1) 

where Y is an observable random variable, X is an 

unobservable random variable with unknown 

density f , and Z is an unobservable random noise 

with known density g . The density g is called 

noise density. We also suppose that X and Z are 

independent. Estimating f on basis of i.i.d.  
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observations of Y  has been known as the density 

deconvolution problem in statistics. This problem 

has received much attention during two last 

decades. Various estimation techniques for f can 

be found in Carroll-Hall [1], Stefanski-Carroll [2], 

Fan [3], Neumann [4], Pensky-Vidakovic [5], 

Hall-Meister [6], Butucea-Tsybakov [7], Johannes 

[8], among others.  

This problem has concerned with many real-life 

problems in econometrics, biometrics, signal 

reconstruction, etc. For example, when an input 

signal passes through a filter, output signal is 

usually disturbed by an additional noise, in which 

the output signal is observable, but the input signal 

is not. 

Let 
1
, ,

n
Y Y  be n  i.i.d. observations of Y .   

In the present paper, instead of estimating f , 

we focus on the problem of estimating the m -fold 

convolution 

times

,    
m

m

f f f m ,                  (2) 

based on the observations. In the free-error case, 

i.e. 0Z , there are many papers related to this 

problem, such as Frees [9], Saavedra-Cao [10], 

Ahmad-Fan [11], Ahmad-Mugdadi [12], Chesneau 

et al. [13], Chesneau-Navarro [14], and references 

therein. For 1m  , the problem of estimating 
m

f  

reduces to the density deconvolution problem. To 

the best of our knowledge, for , 2m m


  , so 

far this problem has been only studied by 

Chesneau et al. [15]. In that paper, the authors 

constructed a kernel type of estimator for 
m

f under 

the assumption that 
ft

g  is nonvanishing on , 

where the function    ft itxg t f x e dt   is the 

Fourier transform of g . The latter assumption is 

fulfilled with many usual densities, such as 

normal, Cauchy, Laplace, gamma, chi-square 

densities. However, there are also several cases of 

g  that cannot be applied to this paper. For 

I  
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CHUYÊN SAN KHOA HỌC TỰ NHIÊN, TẬP 2, SỐ 1, 2018 

 

77 

instance, the case in which g  is a uniform density 

or a compactly supported density in general. In the 

present paper, as a continuation of the paper of 

Chesneau et al. [15], we consider the case of 

compactly supported noise density g . In fact, the 

problem was studied by Trong-Phuong [16] in the 

case of 1m  ; however, the problem has more 

challenge with , 2 m m . 

The rest of our paper consists of three sections. 

In Section 2, we establish our estimator. In Section 

3, we state main results of our paper. Finally, some 

conclusions are presented in Section 4. 

For convenience, we introduce some notations. 

For two sequences  n
u  and  n

v  of positive real 

numbers, we write  n n
u O v  if the sequence 

 /
n n

u v  is bounded. The number of k -

combinations from a set of p  elements is denoted 

by k

p
C . The number  A  is the Lebesgue 

measure of a set A . For a function 

 pL , 1 p   , the symbol 
p

  

represents the usual  pL -norm of  . For a 

function :  , we define 

    : 0Z x x     and 

   supp \ Z  , the closure in  of the set 

 \ Z  . Regarding the Fourier transform, we 

recall that      
ft

ft 2x x    for x , 

   1 2L L  , and moreover, 

ft

22
2   , which is called the Parseval 

identity. 

2  METHODS 

We now describe the method for constructing an 

estimator for 
m

f . First, from the equation (2) we 

have ft ft( ) [ ( )]m

m
f t f t . Also, from the 

independence of X  and Z , we obtain h f g  , 

where h  is density of Y . The latter equation gives 

     ft ft ft h t f t g t , so ft ft ft( ) [ ( ) / ( )]m

m
f t h t g t  

if ft ( ) 0g t  . Then applying the Fourier inversion 

formula, we can obtain an estimator for 
m

f . 

However, it is very dangerous to use 
ft ft[ ( ) / ( )]mh t g t  as an estimator for ft ( )

m
f t  in case 

ftg  can vanish on . In this case, to avoid 

division by numbers very close to zero, ft1/ ( )g t  is 

replaced by the quantity 

   
2

ft ft( ) / max ( ) ; 
a

r t g t g t t , called the 

ridge function. Here 1/a m  is a given 

parameter, and 0   is a regularization parameter 

that will be chosen according to n  later so that 

0   as n . We then obtain an estimator for 

ft ( )
m

f t  in the form   ft( ) ( )    
m

t r t h t . 

Nevertheless, the function ( ) t  depends on the 

Fourier transform ft ( )h t , which is an unknown 

quantity, and so, we cannot use ( ) t  to estimate 

ft ( )
m

f t . Fortunately, from the i.i.d. observations 

1
, ,

n
Y Y , we can estimate ft ( )h t  by the empirical 

characteristics function ft 1

1

ˆ ( ) j
n itY

j
h t n e


  . 

Hence, another estimator for ft ( )
m

f t  is proposed by 

  ftˆ( ) ( )  
 

m

t r t h t . Finally, using the Fourier 

inversion formula, we derive an estimator for 
m

f  

in the final form 

 

   

  

,

ft ft

2
ft

1ˆ : ( )
2

ˆ1
.

2 max ;





 

 
 

  
 
 





itx

m

m

itx

a

f x e t dt

g t h t
e dt

g t t




 

  (3) 

Note that the condition 1/a m  implies 

   1 2L L  almost surely. Thus, the 

estimator  ,
ˆ
m

f x  is well-defined for all values of 

x , and moreover, 
,

ˆ
m

f   belongs to  2L . 

3 RESULTS 

In this section, we consider consistency and 

convergence rate of the estimator 
,

ˆ
m

f   given in (3) 

under the mean integrated squared error 

 
2

, ,
2

ˆ ˆMISE ,
m m m m

f f f f   . First, a general 

bound for  ,
ˆMISE ,
m m

f f  is given in the 

following proposition. 

Proposition 1. Let ,
ˆ
m

f  , 1m  , be as in (3) with 

1/a m  and 0 1  . Suppose that  2f L . 

Then we have 
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2

2
ft

2
ft

,
2

ft

4 2 2
ft ft

2
2

ft1

1ˆMISE , 1

max ;

2 1
,

max ;

 



 






 

m

m

m m m
a

m k m k
mm

k k

m mk
a

k

g t
f f f t dt

g t t

g t f tC
C dt

n
g t t









 

where    
2

72 2 / (2 1)
k k

k
C k k k  , 1, ,k m . 

Proof. Since f  is a density and is in  2L , we 

deduce    1 2

m
f L L , so  ft 2

m
f L . 

Using the Parseval identity, the Fubini theorem 

and the binomial theorem, we obtain 

     

   

  
 

 

  
       

 

  
 

2
ft ft

, ,

2

ft ft

ft

2
ft

2

ft

ft ft ft ft

2
ft

ft

ft f

2
ft

1ˆ ˆMISE ,
2

ˆ1

2 max ;

1 ˆ
2 max ;

1 ˆ
2 max ;

 

 
 

     
 
 

 
           

 
 

 
 

  
 
 







m m m m

m

m

a

m

m

a

m

k

ma

f f f t f t dt

g t h t
f t dt

g t t

g t
h t h t h t f t dt

g t t

g t
C h t h

g t t

 


 

 

 
     

2

t ft ft

0

.




         
m k m k m

k

t h t f t dt

 

Using the inequality 
2 2 2

1 2 1 2
2 2z z z z    with 

  2

1 2
,z z   yields 

   , 1 2

1ˆMISE , ,
m m

f f I I


       (4) 

where 

 

  
   

2

ft

ft ft

1 2
ftmax ;

m

m m

a

g t
I h t f t dt

g t t

 
 

        
 
 

 , 

 

  
     

2

ft

ft ft ft

2 2
ft

1

ˆ .
max ;

m

m
k m k

k

m
a

k

g t
I C h t h t h t dt

g t t





 
           

 
 



 

Since      ft ft fth t f t g t   and    ft ftg t g t  , 

in which  ftg t  denotes the conjugate of  ftg t , 

we have 

   

  
 

 

  
 

2

2
ft ft

ft

1 2
ft

2

2
ft

2
ft

2
ft

max ;

1 ,

max ;

 
 

     
 
 

 





m

m

a

m

m

m
a

g t f t
I f t dt

g t t

g t
f t dt

g t t





     (5)            

 

 

  
     

 

  
     

 

 
   

 

  
 

2 2ft

ft ft ft

2 2
2

ft 1

2
ft

2 2
ft ft ft

2
2

ft 1 1

4 2 2 2ft ft

2
2

ft 1

ˆ

max ;

ˆ

max ;

1
2 1

max ;







 

 



 
  

 

   
  

 
   
 





 

 j j

m
m k m k

k

mm
a

k

m
m m k m k

k k

m mm
a

k k

m k m k k
n

itY itYm k

m m
a

j

g t
I C h t h t h t dt

g t t

g t
C C h t h t h t dt

g t t

g t f t
C e e

n
g t t





1

.






 
m

k

dt

Define  1 j jitY itY

j
U n e e   

 
, 1, ,j n . 

Clearly, the sequence  
1, ,j j n

U


 satisfies the 

conditions of Lemma A.1 in Chesneau et al. [15], 

and moreover, 2 /
j

U n . Hence, applying 

Lemma A.1 in Chesneau et al. [15] with 

2 1p k  , we get 

 

   

2

22

1 1

2 2

2
36

2 1

2 4 2 1 1
36 72 : .

2 1 2 1

 

 
 

    
   

 

     
        

 

 
 



  




 

 
k kkn n

k

j j

j j

k k k

k k

kk k

k
U k U

k

k k
k k C

k n k n n

 

Thus, 

 
   

 

  

4 2 2
ft ft

2 2
2

ft1

2 1 .

max ;

 



   

m k m k
m

m k k

m mk
a

k

g t f tC
I C dt

n
g t t

  (6)             

From (4) – (6), we obtain the desired conclusion.  

Proposition 2. Let the assumptions of Proposition 

1 hold. Then there exists a 
0

0k   depending only 

on g  such that 
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0

4 2 2
ft ft

2
2

ft1

2 1

0

1

max ;

1 1
2 .

 








  
       

 



m k m k
m

k k

m mk
a

k

m

m k

m kma m
t k

k

g t f tC
C dt

n
g t t

k dt C C
nt





. 

Proof. Since the function ftg  is continuous on  

and  ft 0 1g  , there is a constant 
0

0k   

depending only on g  such that  ft 1/ 2g t   for 

all 
0

t k . Then for 1, ,k m  we have 

 

  
 

 

 

  
 

 

    
 

 

0 0

0

4 2
ft

2
ft

2
2

ft

2
ft

2
ft

2
2

ft

2
ft

2
ft 2

ft

2 1

0

max ;

max ;

1 1

max ;

1 1
2 .









 







 

 
  
 
 





 



m k

m k

m
a

m

m k

m
a

m k

m m
t k t k a

m

ma m
t k

g t
f t dt

g t t

g t
h t dt

g t t

dt h t dt
g t g t t

k dt
t









 

Hence, 

   
 

  

0

0

4 2 2
ft ft

2
2

ft1

2 1

0

1

2 1

0

1

max ;

1 1
2

1 1
2 .

 













 
  
 
 

  
       

 





m k m k
m

k k

m mk
a

k

m

m k k

mma m k
t k

k

m

m k

m kma m
t k

k

g t f tC
C dt

n
g t t

C
k dt C

nt

k dt C C
nt







 

The proof of the proposition is completed.  

The mean consistency of the estimator 
,

ˆ
m

f   is 

given in the following theorem. 

Theorem 3. Suppose that  2f L  and 

  ft 0Z g  . Let 
,

ˆ
m

f   be as in (3), where 

1/a m  and   is a positive parameter 

depending on n  such that 0   and mn   

as n . Then  ,
ˆMISE , 0
m m

f f   as n . 

Proof. Since   ft 0Z g   and the Lebesgue 

dominated convergence theorem, we get 

 

  
 

 

  
 

 ft

2

2
ft

2
ft

2
ft

2

2
ft

2
ft

2\ ft

1

max ;

1

max ;

0 .



 

 





m

m

m
a

m

m

m
Z g a

g t
f t dt

g t t

g t
f t dt

g t t

as n





 

Combining this with Proposition 1, Proposition 2 

and the assumptions of the present theorem, we 

obtain the conclusion.  

Remark 4. The condition   ft 0Z g   in 

Theorem 3 is satisfied for normal, gamma, 

Cauchy, Laplace, uniform, triangular densities, 

among others. In particular, if the noise density g  

is a compactly supported, the Fourier transform 
ftg  can be extended to an analytic function on . 

This implies the set  ftZ g  is at most countable, 

so   ft 0Z g  . 

In the rest of this section, we study rates of 

convergence of  ,
ˆMISE ,
m m

f f . To do this, we 

need prior information for f  and g . Concerning 

the density f , we assume that it belongs to the 

class 

     
    

2
ft 2

2
ft 2

, density on : 1 ,

sup 1


  

 



u

L t t dt L

u u L





  



F

 

with 1/ 2  , 0L  . The class  , LF  contains 

many important densities, for example, normal and 

Cauchy densities. Note that 

     1 2, L L L F . In fact, for positive 

integer  , if a density   is in  2L  having 

weak derivatives 
 l , 1, ,l  , and the weak 

derivatives are also in  2L , then   belongs to 

 , LF  for 0L   large enough. Regarding the 

noise density g , we consider the following classes 

of g : 
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2density on : ,

supp , ,

 

 

M L

M M

 



F

 

 

  
1 2

ft

1 2

, , ,

density on : , ,
 

    
d t d t

c c d

c e t c e t
 



 

F

 

in which 
1 2

, , , ,M c c d   are positive constants. 

The class  MF  includes compactly supported 

densities on  ,M M . The class  1 2
, , ,c c d F  

contains densities in which Fourier transforms 

converge to zero with exponential rate of order  . 

Normal and Cauchy densities are typical examples 

of  1 2
, , ,c c d F . In fact, using the Fourier 

inversion formula and the Lebesgue dominated 

convergence theorem, one can show that each 

element of  1 2
, , ,c c d F  is an infinitely 

differentiable function on . Hence, 

 1 2
, , ,c c d F  is often called the class of “super-

smooth” densities. In fact, the case of 

 1 2
, , ,g c c d F  has been studied in Chesneau 

et al. [15]. The reason for considering this class in 

the present paper is that we want to demonstrate 

that the estimator 
,

ˆ
m

f   can also be attained the 

convergence rate established in Chesneau et al. 

[15]. 

Now, we consider the case  g MF . Before 

stating main result of our paper, we need the 

following auxiliary lemma. This auxiliary lemma 

is not a new result. It is quite similar to Theorem 3 

in Trong-Phuong [16]. 

Lemma 5. Suppose  g MF . Given 1  . For 

0   small enough, we choose an 0R   

depending on   such that 

     3 12 1 ln ln 15 lneMR R e       . Then  

for 0   small enough  we have  

       
1/21/2 14 1 130 1 ln 2 lnMe R eM  

         

. 

In addition,  we have  ,
2

R
B R 

  , where 

  ft

,
: ,

R
B t t R g t     . 

Main result of our paper is the following 

theorem. 

Theorem 6. Let 1/ 2  , 0L  . Assume that 

 g MF  with 0M  . Let 
,

ˆ
m

f   be as in (3) for 

a known 1/a m  and n    with 0 1/ m   . 

Then we have 

      ,,
ˆsup MISE , ln .

m

m mf L
f f O n










F

 

Proof. Suppose  ,f LF . We take 

2 1m   , 0 1/ m   and n    with 

0 / 2   . Then applying Lemma 5 gives that 

there exists an 0R   depending on n  such that 

       
1/21/2 1430 2 1 ln 2 lnm Me n R eM n 

 
       

, and   2

,
2 m

R
B R 

   for n  large enough. Now, 

for 20 aR   , we have  

 

  
 

 
 

 
 

 
 

 
 

     

ft

ft ft

ft

2

2
ft

2
ft

2
ft

2
ft

2 2
ft ft

, ,

2
ft

,

2 2
ft 2 ft

,

: 1

max ;

2 ,



    

 



 

 



 



   





 



 

a

a

a

m

m

m
a

m

g t t

m m

t R g t t R g t t

m

t R g t t

m m
m

R
t R t R

g t
J f t dt

g t t

f t dt

f t dt f t dt

f t dt

B f t dt R f t dt



  











where we note that 

  ft: ,
a

t t R g t t      . 

Moreover, since  ,f LF , we derive 

ft 2

ft 2 2 ft 2 2 1 2

2

| ( ) |

| ( ) | (1 ) [| ( ) | (1 ) ] (1 )

.



 





   







m

t R

m m

t R

m m

f t dt

f t t f t t t dt

L R

  



 

Hence, 

 

     

  

2

4

2

2 30 2 1 ln

ln .







 

       



m m

mm
m

m

J L R

L m Me n

O n



 



 (7)           

Combining (7) with Proposition 1 and Proposition 

2, we obtain 

 1,
ˆMISE( , ) (ln ) ( )m m

m m
f f O n n

    . Now, 

we need to choose 0   according to n  so that 
2aR  , and rate of convergence of 1( )mn   is 

faster than that of (ln ) mn  . A possible choice is 
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n   . Then the conclusion of the theorem is 

followed.  

Remark 7. The parameter   in Theorem 6 does 

not depend on  , the prior degree of smoothness 

of f . Therefore, the estimator  ,
ˆ
m

f x  can be 

computed with out any knowledge concerning the 

degree of smoothness. 

Finally, we consider the case 

 1 2
, , ,g c c d F . We have 

Theorem 8. Let 1/ 2  , 0L  . Suppose that 

 1 2
, , ,g c c d F , where 

1 2
, , ,c c d   are the 

given positive constants. Let 
,

ˆ
m

f   be as in (3) for a 

known 1/a m  and 

     
   21 8 / 16 1 4 / 4

ln
m m am m

n n



 

 . Then we have 

      2 /

,,
ˆsup MISE , ln .

m

m mf L
f f O n

 








F

 

Proof. Suppose  ,f LF . Let T  be a positive 

number that will be selected later. Using the 

inequality 

    
2 2

ft ft0 max ;
m

ma ammg t t g t t     for 

all t  and the assumptions  1 2
, , ,g c c d F , 

 ,f LF , we have 
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For the quantities 
1

Q  and 
2

Q , we have the 

estimates 
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Combining Proposition 1 with the estimates of J , 

1
Q  and 

2
Q , we get 
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Choosing 
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  implies 

the desired conclusion.  

Remark 9. We see that the convergence rate of 

 ,
ˆMISE ,
m m

f f  uniformly over the class 

 , LF  in Theorem 8 is as same as that of 

Chesneau et al. [15] when  1 2
, , ,g c c d F . In 

particular, when 1m  , the convergence rate also 

coincides with the optimal rate of convergence 

proven in Fan [3]. 

4  CONCLUSIONS 

We have considered the problem of 

nonparametric estimation of the m-fold 

convolution fm in the additive noise model (1), 

where the noise density g is known and assumed to 

be compactly supported. An estimator for the 

function fm has been proposed and proved to be 

consistent with respect to the mean integrated 

squared error. Under some regular conditions for 

the density f of X, we derive a  convergence rate of 

the estimator. We also have shown that the 

estimator attains the same rate as the one of 

Chesneau et al. [15] if the density g is 

supersmooth. A possible extension of this work is 

to study our estimation procedure in the case of 

unknown noise density g. We leave this problem 

for our future research. 
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Tóm tắt – Bài báo này đề cập mô hình  Y X Z , 

trong đó Y  là một biến ngẫu nhiên quan trắc được, 

X  là một biến ngẫu nhiên không quan trắc được 

với hàm mật độ 
f

 chưa biết, và Z  là nhiễu ngẫu 

nhiên độc lập với X . Hàm mật độ 
g

 của Z  được 

giả thiết biết chính xác và có giá compact. Bài báo 

nghiên cứu vấn đề ước lượng phi tham số cho tự 

tích chập 
  

m
f f f

 ( m  lần) trên cơ sở mẫu 

quan trắc 1
, ,

n
Y Y

 độc lập, cùng phân phối được 

lấy từ phân phối của Y . Dựa trên các quan trắc 

này cũng như phương pháp chỉnh hóa tham số 

chóp, một ước lượng cho m
f

 phụ thuộc vào hai 

tham số chỉnh hóa được đề xuất, trong đó một 

tham số được cho trước và tham số còn lại sẽ được 

chọn sau. Ước lượng này được chứng tỏ là vững 

tương ứng với trung bình sai số tích phân bình 

phương dưới một số điều kiện cho các tham số 

chỉnh hóa. Sau đó, nghiên cứu tốc độ hội tụ của 

ước lượng dưới một số giả thiết chính quy bổ sung 

cho hàm mật độ 
f

. 

 

Từ khóa – Ước lượng, hàm mật độ nhiễu có giá compact, tốc độ hội tụ 

 


