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Estimation of a fold convolution in
additive noise model with compactly
supported noise density

Cao Xuan Phuong

Abstract — Consider the model Y=X+Z,
where Y is an observable random variable, X
is an unobservable random variable with
unknown density f , and Z is a random noise

independent of X . The density g of Z is

known exactly and assumed to be compactly
supported. We are interested in estimating the
m - fold convolution f, = f *...+f on the basis

of independent and identically distributed
(i.i.d.) observations V,...,y, drawn from the

distribution of Y . Based on the observations as
well as the ridge-parameter regularization
method, we propose an estimator for the
function f_ depending on two regularization

parameters in which a parameter is given and a
parameter must be chosen. The proposed
estimator is shown to be consistent with respect
to the mean integrated squared error under
some conditions of the parameters. After that
we derive a convergence rate of the estimator
under some additional regular assumptions for
the density f .

Index Terms — estimator, compactly supported
noise density, convergence rate

1 INTRODUCTION

I n this paper, we consider the additive noise
model

Y=X+Z (1)
whereY is an observable random variable, X is an
unobservable random variable with unknown
density f , and Z is an unobservable random noise

with known densityg. The density g is called
noise density. We also suppose that X and Z are
independent. Estimating f on basis of i.i.d.
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observations of Y has been known as the density
deconvolution problem in statistics. This problem
has received much attention during two last
decades. Various estimation techniques for f can

be found in Carroll-Hall [1], Stefanski-Carroll [2],
Fan [3], Neumann [4], Pensky-Vidakovic [5],
Hall-Meister [6], Butucea-Tsybakov [7], Johannes
[8], among others.

This problem has concerned with many real-life
problems in econometrics, biometrics, signal
reconstruction, etc. For example, when an input
signal passes through a filter, output signal is
usually disturbed by an additional noise, in which
the output signal is observable, but the input signal
is not.

Let Y,...,Y, be n i.i.d. observations of Y .

In the present paper, instead of estimating f ,

we focus on the problem of estimating the m -fold
convolution

f,="f=*._*f,

-

m times

meZ', @)

based on the observations. In the free-error case,

ie. £=0 there are many papers related to this
problem, such as Frees [9], Saavedra-Cao [10],
Ahmad-Fan [11], Ahmad-Mugdadi [12], Chesneau
et al. [13], Chesneau-Navarro [14], and references
therein. For m=1, the problem of estimating f_
reduces to the density deconvolution problem. To
the best of our knowledge, for meZ", m>2, so
far this problem has been only studied by
Chesneau et al. [15]. In that paper, the authors
constructed a kernel type of estimator for f_under

the assumption that g" is nonvanishing onRR,
where the function gﬁ(t):Jw f (x)edt IS the

Fourier transform of g . The latter assumption is
fulfilled with many usual densities, such as
normal, Cauchy, Laplace, gamma, chi-square
densities. However, there are also several cases of
g that cannot be applied to this paper. For
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instance, the case in which g is a uniform density

or a compactly supported density in general. In the
present paper, as a continuation of the paper of
Chesneau et al. [15], we consider the case of
compactly supported noise density g . In fact, the

problem was studied by Trong-Phuong [16] in the
case of m=1; however, the problem has more

challenge with meZ*, m>2.

The rest of our paper consists of three sections.
In Section 2, we establish our estimator. In Section
3, we state main results of our paper. Finally, some
conclusions are presented in Section 4.

For convenience, we introduce some notations.

For two sequences (u,) and (v,) of positive real
numbers, we write u, =O(v,) if the sequence
(u,7v,)
combinations from a set of p elements is denoted
by C;. The number A(A) is the Lebesgue
measure of a set AcR. For a function
pel’(R), 1<p<w, the symbol ||¢)||p
represents the usual L°(R)-norm of ¢. For a
function ¢ R->C, we define

Z(¢)={xeR:¢(x)=0} and

supp(¢) =R\Z(¢), the closure in R of the set
R\Z(¢). Regarding the Fourier transform, we

is bounded. The number of k-

recall that (g" )ﬁ (x)=2mp(-x) for xeR,
gl (R)NL(R), and
|#"||, =~27 |4, which is called the Parseval
identity.

moreover,

2 METHODS

We now describe the method for constructing an
estimator for f . First, from the equation (2) we
have  f*M)=[f"®)]". Also, from the
independence of X and Z, we obtain h=f xg,
where h is density of Y . The latter equation gives
h'(t)=f"(t)-g"(t), so f @ =[N"®)/g"OF
if g"(t)=0. Then applying the Fourier inversion
formula, we can obtain an estimator for f_.
However, it is very dangerous to use
[h"(t)/ g™ (t)]" as an estimator for f'"(t) in case

ft

g" can vanish on R. In this case, to avoid
division by numbers very close to zero, 1/ g" (t) is

replaced by the quantity
r(t)=9" - /max{[g" Of ik} called the

ridge function. Here a>1/m is a given
parameter, and & >0 is a regularization parameter
that will be chosen according to n later so that
6 — 0 as n— oo . We then obtain an estimator for

fit) in the o) =[r(t)h"®)]".
Nevertheless, the function ®(t) depends on the

form

Fourier transform h"(t), which is an unknown
quantity, and so, we cannot use ®(t) to estimate
f*(t). Fortunately, from the i.i.d. observations
Y,,...,Y,, we can estimate h"(t) by the empirical

Sty _ 1N At
h(t) =n Zj:le .

Hence, another estimator for ' (t) is proposed by

characteristics ~ function
d)(t):[r(t)ﬁ“(t)}m. Finally, using the Fourier

inversion formula, we derive an estimator for f_
in the final form

£ 1 itx
fos (X) = L{e’ D(t)dt

m

~ 3

i g |, @
e | maa" of k)

Note that the condition a>1/m implies

® el (R)NL*(R) almost surely. Thus, the
estimator f, ;(x) is well-defined for all values of

x e R, and moreover, f , belongsto L*(R).

3 RESULTS
In this section, we consider consistency and
convergence rate of the estimator fm, s givenin (3)

under the mean integrated squared error
A A 2
MISE(fmvd,fm):E fos— T - First, a general

bound for MISE(f
following proposition.

Proposition 1. Let f

mo fm) is given in the
ms s M=1, be as in (3) with
a>1/m and 0<& <1. Suppose that f e L*(RR).
Then we have



78 SCIENCE AND TECHNOLOGY DEVELOPMENT JOURNAL -

ft Vi
MISE(f,.,. T, )<= ‘ 9" Ao ot
IR max{‘ & 2_ a m
g" (1) ,5\t }
" C 7.[ ‘g 4m-. ZK‘f -k)
T = * max{‘g é\t\}
where C, =(72k)™ (2k/ (2k -1)", k=1,...,m

Proof. Since f is a density and is in L*(R), we
deduce f eL'(R)NL*(R), so frel*(R).

Using the Parseval identity, the Fubini theorem
and the binomial theorem, we obtain

MISE .. f):i'[E‘ f0- 1 (0] o
2

E gﬁ(_t)hi(t)}} ] o

max{‘g" (t)] ol

2

gl T g ()Rt (4) | <[ £ ()]] ot
zﬂ'-[lP max{gﬁ(t)z;ata;{ () } [ }
L E o mck h (o) - (1) ot

Using the inequality |z, +z,|" <2|z|" +2|z,|" with
(z,,2,) e C? yields

MISE( ,, f, ) < i(l +1,), 4)
where
[ — 2 T[T o,
¢ max{|g“(t)| ;5|t|}

2

{\ \ sm} ch[hﬁ

()9 (1) and g* (-)=g"(0).
in which g"(t) denotes the conjugate of g"(t),
we have

Since h"(t)=

M 0]
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. 2

()] dt

B BURKG

. max{|g“(t)|2;5|t|a}

2m
2m

dt,

y o't

1)
mz:1x{|gft () ;5|t|a} |

- ]E[ ) c: i (v)-1t (t)mh“ (t
k

I jz it

ka

dt
%
}n.

j=1...,n.

— B Yy
k

) max”g“(t)‘ ;§\t\a} 1A

e o OO TRt e
=(-1))ct gzzm{i ¢" -B(e")
! maX{\g“(t)\ ;6M“} H”[ )

Define U, =n" [eiw' —E(ew‘ )]

A (t)-h" (t) ”\hﬁ

4m-2k

Clearly, the sequence (U].)J_f1 satisfies the

conditions of Lemma A.1 in Chesneau et al. [15],
and moreover, [U|<2/n. Hence, applying
Lemma A.1 in Chesneau et al. [15] with
p=2k>1, we get

1 1

n

S|

j=1

5y } o2 {
< (36K (25“1)( j (7 [%_1] 2aca

4m- Zk‘

f

- dt (6)
‘ max{‘g tf ;5\t }

From (4) — (6), we obtain the desired conclusion.

Proposition 2. Let the assumptions of Proposition
1 hold. Then there exists a k, >0 depending only

on g such that
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2(m-k)

fh

4m-— 2k|

dt

o, Cop 9"
Se.i

= : mz:1x{|gft (t) | ;§|t| }

[mk LM —_ ][ch}

Proof. Since the function |g"| is continuous on R

and |g"(0)[=1, there is a constant k,>0

depending only on g such that |g" (t)[=1/2 for

all |t|<k,. Thenfor k =1,...,m we have
ft 4m-2k
t (-
LA R
P‘max{|g“(t)| ;5|t|a}
f 2m
t .
| () e (0" ot

max“gﬂ (t)|2 ;5|t|a}2m
1 1
< dt
jmgko gft(t)zm +J.M>k0 max|g" 2.5 a

1 1
< 22m+1k = iy
< [ ot J.M% |t|ma dt] 5

Hence,

2(m-k
n )

jo" (]|t
k1 C:]n_:"‘”{ .
= max{|g (t) | ,§|t| }

2m+1 1 i N k&
g[z K, +J‘M>k0 i dt] = kZl:C nk
< 22m+l

e

g

The proof of the proposition is completed.

4m-. 2k|

dt

The mean consistency of the estimator fAmva is
given in the following theorem.

Theorem 3. Suppose that
2(z(g"))=0. Let f,,
a>1/m and & is a positive parameter
depending on n such that § -0 and né™ —
as n—oo. Then MISE(f,

fel’(R) and

be as in (3), where

f )—>0 as N —oo,

00 Tm

Proof. Since ﬂ(Z(g“)):O and the Lebesgue
dominated convergence theorem, we get

I o (v .
a0 ot

!
_Iuw\z( |

‘max{|g |2;§|t|a}m

—0 as now,

2

2m

dt

ti ()

Combining this with Proposition 1, Proposition 2
and the assumptions of the present theorem, we
obtain the conclusion.

Remark 4. The condition A(Z(g“))=0 in

Theorem 3 is satisfied for normal, gamma,
Cauchy, Laplace, uniform, triangular densities,
among others. In particular, if the noise density g

is a compactly supported, the Fourier transform
g" can be extended to an analytic function on C .

This implies the set Z(g“) is at most countable,
S0 ﬂ(Z(g“)):O.

In the rest of this section, we study rates of
convergence of MISE(f f ) To do this, we

mgs?! 'm

need prior information for f and g. Concerning
the density f , we assume that it belongs to the
class

F(a,L)= {density gonR: j " (0)f (1+7) dt <L,

sup|¢" (u | ) (1)’ SL}
uelk
with & >1/2, L>0. Theclass # (e, L) contains

many important densities, for example, normal and
Cauchy densities. Note that

F(a,L)c L(R)NL*(R). In fact, for positive
integer o, if a density ¢ is in L°(R) having
weak derivatives ¢, 1=1,...,a, and the weak
derivatives are also in L*(R), then ¢ belongs to
F(a,L) for L>0 large enough. Regarding the
noise density g, we consider the following classes
of g:
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F (M) ={density g on R: gL’ (R),
supp(¢) =[-M, M1},
7 (c,.c,.d, B)
= {density gonR: e < 6" (1) < ce vte R},

in which M,c,,c,,d, £ are positive constants.

The class % (M) includes compactly supported
densities on [-M,M]. The class % (c,,c,,d, /)
contains densities in which Fourier transforms
converge to zero with exponential rate of order S .
Normal and Cauchy densities are typical examples
of 7(c,c,,d,B). In fact, using the Fourier
inversion formula and the Lebesgue dominated
convergence theorem, one can show that each
element of % (c,c,,d,8) is an infinitely
differentiable ~ function  on R.  Hence,
7 (c,,c,,d, B) is often called the class of “super-
smooth” densities. In fact, the case of
ge7(c,c,,d, B) has been studied in Chesneau
et al. [15]. The reason for considering this class in
the present paper is that we want to demonstrate
that the estimator fﬂmﬁ can also be attained the
convergence rate established in Chesneau et al.
[15].

Now, we consider the case g% (M ). Before
stating main result of our paper, we need the
following auxiliary lemma. This auxiliary lemma

is not a new result. It is quite similar to Theorem 3
in Trong-Phuong [16].

Lemma 5. Suppose g €% (M). Given x>1. For

p>0 small enough, we choose an R>0
depending on P such that
2eMR[ (#+1)INR+In(15¢’) | =In(p™).  Then

for p >0 small enough we have

NATURAL SCIENCES, VOL 2, NO 1, 2018

Theorem 6. Let a>1/2, L>0. Assume that
ge# (M) with M >0. Let f , beasin (3) for

aknown a>1/m and 6=n" with O<z<1/m .

Then we have
SUP, () MISE( f 5t ) = O{(In n)’m“}.

Proof. Suppose feZ(a,L). We take
u=2ma>1, O0<r<l/m and p=n" with

O<v<rz/2. Then applying Lemma 5 gives that
there exists an R >0 depending on n such that

[30(2ma +1) Me“]fﬂ2 [In(n”’ )]M <R<(2eM)"In(n")
,and A(B,,)<2R*™ for n large enough. Now,

for 0<&6 <R™p°, we have

2
‘ o
J = jﬂk

9" (1)
J“gn(,)‘(W| f ! (t)

£ ()" dt

max{|g“ (t)|2 ;5|t|a}m

2m

dt

IA

- £ ()" dt £ (1) dt
I‘t‘SR“gﬁ(l]‘Sp ( ) +Lt‘£R,p<‘gﬁ(l)‘<\W ( )
fﬂ 2m
+J.\!\>R“g“(t)‘<\W (t) dt
2m oma 2m
SA(BRVP)+L‘>R|f“(t)| dt < 2R? +jm>R " dt,
where we note that

{te]R:|t|£R, p<|g“(t)|<W}:@.
Moreover, since f € 7 (a,L), we derive

| IRAACIRE

= I‘MI FrOF @) [ @O F @+) T L+ t) ™ dt

S LmR—Zma.
Hence,
J< (2+ Lm)R*Zm“

[30(u+) e T [In( )" <R < (26M) *in(*) - <(2+1°)[30(2mas1) ' " ()] ™ 7

In addition, we have A(B,,)<2R™*, where
B., ={teR:[t| <R |g"(t) < p}.

Main result of our paper is the following
theorem.

= O{(In n)fm“}.
Combining (7) with Proposition 1 and Proposition
2, we obtain
MISE(f, ,, f,) =O{(Inn)™ +(ns")*}.  Now,

we need to choose 6 >0 according to n so that
8 <R™p?, and rate of convergence of (no™)™ is

faster than that of (Inn)™™ . A possible choice is
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d=n". Then the conclusion of the theorem is
followed.

Remark 7. The parameter § in Theorem 6 does
not depend on « , the prior degree of smoothness

of f. Therefore, the estimator f, ,(x) can be

computed with out any knowledge concerning the
degree of smoothness.

Finally, we consider the
geZ(c,c,,d, B). We have

case

Theorem 8. Let o« >1/2, L>0. Suppose that
geZ(c,c,.d,B), where c,c,d g are the
given positive constants. Let f s beasin (3)fora
known a>1/m and

c')’:n(l_sm)'(lsm)(ln n)(lf“m)/“mﬁ ). Then we have

SUP 5 (an) M|SE( fmﬁ, f ) - O{(In n)—Zma/ﬁ}.

Proof. Suppose f € 7 (a,L).Let T be a positive

number that will be selected later. Using the
inequality

0< max{|g“ (t)|2 ;5|t|a}m ~|g" (t)|2m <&"[t" for
all teR and the assumptions g € 7 (c,,c,,d, 3),
f eZ(a,L), we have

2
1=] ‘ Jo" () 1 |f ()" dt
T e PR\
max{‘g () ;s }
m |4]2am
< ] 52 ‘t‘z - - ‘fﬁ(t)‘zm dt
max{\g"(t)\ ot }

52m tZam o
sj'mg i NG dtJr'[WT

gﬁ(t)rm
< (Cl)%m J-H<T
jH L ey e

-0 {62meAde/’T 2am | T -2ma }

2am _amd|t/’
Zm‘t‘ emH ‘fft

(1) dt

i (1+t2)“}“ (1+65) ™

Also,

81
4m 2k (m—k)
g "
Co k jue| | dt
max{ (t) | ;5|t| }
ft 2m
== : (t)J -t
" max g (o) o
i C |gﬁ(t)|4m 2k|]c | m-k)
+) Ck =k dt=Q,+Q,.
; n« J.M max{|g" t | ;§|t| } 1 2
For the quantities Q, and Q,, we have the

estimates

Q<in I - dt+_[ s dt
7 | Jger gﬂ(t)rm (T §2m |t|zam

T 2mdT” 1 1-2am ,-2mdT”
=O{n—me +—nm52mT e s

3 [f " (t)|2(m 9
Qz Z [J-:q |g (t)l

|g (t)|4m 2|<|f (t)lz(m k)
i

52m |t|2am
ot 2k B 2(m— k)
I (CO BT O
(Cz )4m—2kJ. —(4m 2k)d |t |f (t)
[t|>T

2(m-k)
57 MTdtJ
( L( ) 2k g2kar”

+L( )4m 2k 1 —(4m—2k)dTﬁT—2amj

—+

<Z:(:k

< Zcmc L max{(cl)*k ey ™)

1 2kdT” 1
. € + o
n n‘o

e—(4m—2k)dT”T —2am ] .

Combining Proposition 1 with the estimates of J ,
Q, and Q,, we get

MISE(f,,. T, ) = O{smesmr Tzen .7 2ne

+le2deﬁ n 1 T1—2ame-2de/* }
nm nmé‘Zm
m-1
+Y_C,CrLmax {(c1 ) ()" } x

k=1

1 s 1
x _kezde + —
n no

e-(Am-Zk)dT/’T ~2am j
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Choosing T =((In n)/(8md))w yields

MISE ( f,.5. f.0)

= O{nl’2 (In n)zam/ﬂ S +(In n)’zm“'ﬂ
1 (1-2am)
W('”n)l ‘ /ﬂ}

+Z€C§1CkLmaX {(cl) 2 (e,)™ Zk}x

+nm%(ln n)”” -+

1 1 ,Zam,,;)
=< O + Inn
[nkLl 1/(4m)] n1/2< K[1 1/(4m)J52m ( )

= O{n“2 (Inn)*™” &2 4 (Inn) ™"’
1 1 (1-2am)
+ e (In n)"” + nmwagae (INN) e w}
m-1
+> " CxC, L max {(c1 ) 5(c,)" } =
k=1

1 1 —2am/p
> O[ Lt Y@Em) + 32— 1(Em) s2m (In n)

= O{n”2 (Inn)*™” &2 4 (Inn)>™"”

1 1-2am/p 1
+ 3/2-1/(am) (In n) S2m }

Choosing & = n(l—sm)/(lSm ) (In n)(l—Aam)/(4m/})

the desired conclusion.
Remark 9. We see that the convergence rate of

A

MISE(f

implies

fm) uniformly over the class

m,o?
7 (a,L) in Theorem 8 is as same as that of

Chesneau et al. [15] when g e (c,c,,d,). In

particular, when m=1, the convergence rate also
coincides with the optimal rate of convergence
proven in Fan [3].

4 CONCLUSIONS

We have considered the problem of
nonparametric ~ estimation of the m-fold
convolution fy, in the additive noise model (1),
where the noise density g is known and assumed to
be compactly supported. An estimator for the
function f has been proposed and proved to be
consistent with respect to the mean integrated
squared error. Under some regular conditions for
the density f of X, we derive a convergence rate of
the estimator. We also have shown that the
estimator attains the same rate as the one of
Chesneau et al. [15] if the density g is
supersmooth. A possible extension of this work is
to study our estimation procedure in the case of

NATURAL SCIENCES, VOL 2, NO 1, 2018

unknown noise density g. We leave this problem
for our future research.
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Uéc luong mot tu tich chap trong mdt mo
hinh cong nhi€u v61 ham mat do nhi€u
cO gia compact

Cao Xuan Phuong
Truong Pai hoc Ton Dl Théng
Téac gia lién hé: xphuongcao@gmail.com

Ngay nhén ban thao: 06-05-2017, ngay chép nhan ding: 15-05-2017, ngay dang: 10-08-2018

Tém tit — Bai bao nay dé cap md hinh Y =X +2Z
trong d6 Y 1a mot bién ngiu nhién quan tric duoc,
X 1a mét bién ngdu nhién khong quan tric duoc
véi ham mat do F chua biét, va £ 1a nhidu ngau
nhién doc lap véi X . Ham mat do 9 cia Z duoc
gia thiet bict chinh xac va c6 gia compact. Bai bao
nghién ctru van dé udce lugng phi tham so6 cho tu

tich chap fp = frooxf (M l4n) trén co s& mau
quan tric Y=Y doc lap, ciing phan phdi dwoc

ldy tir phan phdi cua Y . Dya trén c4c quan tric

nay ciing nhu phuong phip chinh héa tham s

chop, mot uée lugng cho fi phu thugc vao hai
tham s chinh hoa dugc dé xuit, trong d6 mot
tham sb duoc cho truge va tham sb con lai s& duoc
chon sau. Uéc lugng nay duoc ching té la viing
tuong (rng Vai trung binh sai sé tich phan binh
phuong dudi mot sé diéu kién cho cac tham sb
chinh hoa. Sau d6, nghién ctru téc do hoi tu cua
uée lugng dudi mot s6 gia thiét chinh quy bd sung

cho ham mat do f .

T khoa — Udc lwong, ham mdt dé nhiéu cé gid compact, t6¢ @6 hoi tu



