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ABSTRACT

In the paper, we give some remarks on [1]. Then,
we modify main results concerning the sum rule of
second-order contingent derivatives for set-valued
maps and its application to the sensitivity analysis of

generalized perturbation maps. The obtained results
are new and better than those in [1]. Some examples
are proposed to illustrate our results.
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INTRODUCTION

In [1], the second-order proto-differentiability and
second-order semi-differentiability for set-valued maps
were firsthy discussed and applied to sum rules of two
set-valued maps. Then, the authors established second-
order sensitivity analysis of generalized perturbation
maps as an application of sum rules. The semi-
differentiability plays an essential role in all main
results in [1].

PRELIMINARIES

In the paper, we give some remarks on the
Proposition 2 and Theorem 1 in [1]. On the other hand,
a new result is proposed to avoid the semi-
differentiability by using a weaker hypothesis of the
proto-differentiability.

The layout of this paper is as follows. Section 2 is
devoted to several concepts needed in the sequel. Our
main remarks and modified results are given in Section
3.

Throughout the paper, let X and Y be normed spaces. For a set-valued map F:X —2", the domain,
image, and graph of F are defined, respectively (resp for short), by

dom(F):={xe X |F(x) =D}, im(F):={yeY|yeF(X)},
gr(F)={(x,y) e XxY |y e F(x)} .
Definition 2.1 ([2, 3]). Let S< X, xecl(S) and we X , where cl(S) denotes the closure of S .

(i) The contingent cone and the adjacent cone of S at x are defined by, resp,
T(S,%):={ueX|3t, >0",3u, >u,x+t,u, €S},

T°(S,%):={ue X |vt, >0",3u, > u,x+t,u, €S}.
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(ii) The second-order contingent cone and the second-order adjacent cone of S at x in the direction w are
defined by, resp,

tZ
T?(S, X, W) = {u e X |3t, »0",3u, —>u,x+tnw+§un es},

t2
T (S, x,w) = {u e X |vt, —0",3u, —>u,x+tnw+§un € S}.
Remark 2.1. From the Observation 1 in [4], we obtain the equivalent formulae of Definition 2.1(ii) as follows

Je,,B,>0:a, = +xo, S, —>+oo,&—>2,

T?(S,x,w):=qu e X a ’
X, e€S:a,(X,—x) >w, L (a,(X, —X)—W) > u
2(b van,ﬂn>O:O{n—)+00,ﬂn—)+oo,&_)2,
T2O(S,x,w) :={ue X a

I, eS:ia,(X,—X) > W, L (a,(X, —X)—W) > u

Definition 2.2 ([2, 3]). Let F: X = 2", (x,y) e gr(F) and (w,r) e X xY .

(i) The contingent derivative (the adjacent derivative) of F at (x,y) is a set-valued map DF(x,y): X —2" (
D°F(x,y): X — 2", resp) such that

gr(DF(x,y)) =T(gr(F).(x,y))
(gr(D°F(x,¥)) :=T"(gr(F),(x,¥)). resp).

(if) The second-order contingent derivative (the second-order adjacent derivative) of Fat (x,y) in the

direction (w,r) isaset-valued map D*F(x,y,w,r): X —2" (D**F(x,y,w,r): X — 2", resp) such that
gr(D*F(x, y,w,r)) :=T*(gr(F), (x,y), (w,r))
(gr(D*?F(x, y,w,r)) =T*P(gr(F),(x,y),(w,r)) , resp).

Remark 2.2. From Definition 2.1 and Remark 2.1 is follous

t? t?
D2F(x, Y, W, r)(u):{v eY|3t, > 0", 3u, > u,3v, —>v,y+tnr+§vn € F(x+tnw+%unj}

B

e, p, >0:a, > +x, f, > 40, — 2,

n

=jveY EI(Xn’yn)egr(F):an(Xn_X)_)W!ﬁn(cxn(xﬂ_X)_W)_)u! ’
%, (Yo =Y) > 1 B (@, (Y, —y) =1) =V

tZ t2
D*@F(x, y, W, r)(u):{VeY |Vt —0",3u, > u,3v, >V, y+tr +§vn € F[x+tnw+—;unj}
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Jét

Va,,f,>0:a, > +o, f, — +0, " — 2,

n

=qveY(3(x,, Y, ear(F):a,(x, —x) > w, S (a,(X, —X)—W) > u, .
an(yn_y)%rlﬂn(an(yn_y)_r)_)\/

Definition 2.3 ([5]). Let F: X —2", (x,y) e gr(F) and (w,r) e X xY . The second-order lower Dini derivative of
F at (x,y) indirection (w,r) isaset-valued map D?F(x,y,w,r): X — 2" that is defined by

t: t?
DZF(X, Y, W, r)(u):{v eY|Vt, >0, Vu, »>u,3v. v, y+tnr+§vn € F(x+tnw+§un}_

Remark 2.3. (i) By the proof similar to that of Observation 1 in [4], we get

B

Va,, B, >0:a, > 40, — 40, — 2,

a,

DIF(X,y,w,r)(u) = {veY |vx, e dom(F): e, (X, —X) = W, B, (a, (X, — X) —W) = U, ;.
Elyn eF(Xn):CZn(yn_y)_)r!ﬁn(an(yn_y)_r)_)v

(ii) It is obvious to see that
D’F(x,y,w,r)(u) c D*@F(x,y,w, r)(u) < D*F (X, y, W, r)(u).
Definition 2.4 ([6, 7]). Let F:X—2",
(x,y) egr(F) and (w,r) e X xY .

(i) The map F is said to be second-order proto-
differentiable at x relative to y in the direction (w,r)
if D2F(x,y,w,r)=D"®F(x,y,w,r).

(if) The map F is said to be second-order semi-
differentiable at x relative to y in the direction (w,r)
if D’F(x,y,w,r)=D?F(X,y,w,r).

It is easy to see that if F is second-order semi-

differentiable then F is second-order proto-
differentiable.

Definition 2.5 ([1]). Let F: X —2', (x,y)egr(F)
and (w,r)e X xY. The map F is said to be second-

order lower semi-differentiable at (x,y) in the
direction (w,r) if for any «,, S, >0, X, € dom(F)

B

with o, > +o, — 40, -2
(04

n

a, (X, —X) >w

and S («,(x,—x)—w) —>u for some ue X, there
Y, €F(x,) such that

By (@ (v —y)-r) s

exists a subsequence

an, (ynI - y) —>7r and
Convergent.

Remark 2.4. By Remark 2.3(i), if F is second-order
semi-differentiable then F is second-order lower semi-
differentiable. This assertion can be also implied
immediately by Proposition 1 in [1].

Recall that a set-valued map F: X — 2" is called
to be metric regular at (x,y)egr(F) if there are

4,7 >0 such that forall ue B, (x,r),veB,(y,r),
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d(u,F(v)) < ud (v, F(u)), 1)
where B, (x,r) denotes the open ball in X centered at
X with radius r.

By fixing v =y in (1), we get a weaker definition
named by metric subregularity. The metric
(sub)regularity plays an important role in variational
analysis and has been applied to many topics of
optimization, see [2, 8-10] and the references therein.

Inspired of the above definition, we propose the
following concept.

Definition 2.6. Let F:X —2', (xy)egr(F)and
S < X . The map F is said to be metric subregularity
at (x,y)egr(F) with respect to S if there are
4,1 >0 such that for all ueB, (x,r)NS,veB,(y,r),

d(u,F(y)NS)< d(y,F(u)).

MAIN RESULTS

Firstly, we recall a main proposition in [1] as
follows.

Proposition 3.1 (Proposition 2 in [1]). Suppose that
G: X —2"is second-order proto-differentiable at x

relative to yeG(x) in the direction (W,F)e X xY,
G:X — 2" is second-order semi-differentiable at x
relative to yeG(x) in the direction (w,?)e X xY

and G is second-order lower semi-differentiable at
(x, y) in the direction (w,?). Then, the set-valued

map G:X —2" defined by G:=G+G is second-
order proto-differentiable at x relative to y:=y+y in
the direction (w,r), where r=r+r, and for all
ue X,

D’G(x, y,w, r)(u) = D*G(x,y,w,T) (u) + D*G(x,y,w,T ) ()

Remark 3.1. (i) From Remark 2.4, the assumption on
the second-order lower semi-differentiability of G at

(x, y) in the direction (w,?) is superfluous.

(ii) In the proof of the Proposition 2 (see page 248
of [1D. the authors implied that

V-ve Df(x&,w,?)(u) from the second-order lower

semi-differentiability of G . This assertion is right if
Yy, €G(x,). Since

Yo = Yo=Y €G(%,)=G(x,) =G (x,)+G(x,)-G(x,)

and G is a set-valued map, it is not sure that vy,
belongs to G(x,). Thus, the conclusion of the

Proposition 3.1 may be not true, see Example 2.1 in
[11].

Hence, the Proposition 3.1 should be presented as
follows.

Proposition 3.2. Let G,G:X 2",
(xy) c gr(a),(x, y) IS gr(G) and (W,F,F) e X xY xY
. Suppose that G is second-order semi-differentiable at
x relative to y in the direction (w,?). Then, for all
ue X,
DZC_E(XS/, W,F)(u) + DZG(X, ¥, W, ?)(u) c D*G(x, y,w, r)(u),
)
where G:=G+G, y=y+y and ri=r+r.

When G is a single-valued map, (2) become an
equality. If, additionally, G is second-order proto-
differentiable at x relative to y in the direction (w,F)
, then G is second-order proto-differentiable at x
relative to y in the direction (w,r) .

Proof It is similar to the proof of Proposition 2 in [1].

As an application of Proposition 3.1 to sensitivity
analysis of generalized perturbation maps, Theorem 1
in [1] should be stated by
Theorem 3.1. Let X,Y,Z be normed spaces,
G:XxZ—>2"be defined by
G(x,z):={yeD|zeF(xy)+K(y)}, where D is a

closed convex subset in Y, F:XxY—o?2%,
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K:D—2° ,(y,E) egr(K),((xy).z- z) e gr(F)and z—7 in the direcction (w, r.q —a) Then, for all u e X

(w,r,q—a)e Xx(D—y)xZ. Suppose that F is -
second-order semi-differentiable at (x,y) relative to

{v eT?(D,y,r)|pe DZF(x, y,z—E,W,r,q—a)(u,v)+DZK(y,E,r,a)(V)}

< D’G(x,2,y,w,q,r)(u, p) - 3
When F is a single-valued map, (3) is an equality. If, additionally, K is second-order proto-differentiable at
y relative to z in the direction (ra) then G is second-order proto-differentiable at (x,z) relative toy in the

direction (w,q,r).

Proof. The reader is referred to Theorem 1 in [1].

A natural question arises: which conditions ensure that (3.1) becomes an equality when all maps are set-
valued? To get the answer, we recall a concept of the TP-derivative (see [12]) of a set-valued map F: X — 2" at
(x,y) e gr(F) as follows

D F(X Y)U) ={veY|3t,>0,3(u,,v,) > UV): X+t u, —> X y+tv, e F(x+tu,)}.
The following concept is necessary for our next result.

Definition 3.1. Let F: X —2", (x,y)egr(F) and (w,r)e X xY . The asymptotic second-order TP-derivative of
F at (x,y) inthe direction (w,r) isaset-valued map D7,F(X,y,w,r): X — 2" defined by

t.h
3t,.h, >0,3(u,,v,) > UV): x+t,w+ ”2” U, =X,

DZLF(x,y,w,r)(u):={veY h h
y+tnr+%vn eF(x+tnw+%unj

It is obvious to see that D2,F(x,y,0,0)(u) = D,.F(x, y)(u) for all ue X . By virtue of the asymptotic second-
order TP-derivative, we obtain the converse inclusion of (3.1) for set-valued maps as follows.
Proposition 3.3. Let G,G: X — 2", (X,)_/)e gr(@),(x, y)e gr(G) and (W,F,?)e X xY xY . Suppose that Y is
finite dimensional and

DZG (% y,w.r)(0) ﬂ(—DTZPG(x, VoW, F)(O)) ~{0}. 4)
Then, forall ue X,
D’G(x, y,w,r)(u) Dzé(x,§,w,F)(u) +D?G (x, Y, W, F)(u) ,

where G:=G+G, y:=y+y and r==r+r.
Proof. Let v e D?G(x, y,w, r)(u), then there exist t, — 0", (u,,V, ) —> (u,v) such that

t? t? = t? t?
y+t.r +§vn eG(x+tnw+%unj :G[x+tnw+%UHJ+G(x+th+§unj.
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2

_ 2
Thus, there are y, EG[X+th+%UnJ and vy, EG[X+th+%UnJ such that

vV, =V, +V,
oy —y-tr _y—tr
where v, = Yo Y =V, = Yo Y >
@/ 2, @/ 2)t;
Suppose to the contrary, i.e., |v,||— 4o . By setting z, =v, /

limit point z with ”2“:1. Moreover,

n

t (tn v )
2

y+g?+

Let h, =t

Vn

V

n

V

n

—»—7.Onthe other hand,

tn(tn v ) v
2 v

n
n

which implies v, /|v,

y+t r+

Thus, —z e DTZP(_B(X&,W,F)(O), which contradicts (4).
Without loss of generality, we assume that v,
converges to v, then v e DZG(x, y,w,f’)(u). From (5),
V, =V, —V, >V-V. Hence

V—QEDZG(X,;/,W,F)(U), ie.,

one gets

Ve Dza(x,)_/,w,F)(u)+ DZG(X, y,W,F)(u) .

Note that (3.3) is only a sufficient condition (not
necessary condition) for the converse inclusion of (2),
see Example 2 in [1].

It follows from the Proposition 3.3 that the
Proposition 3.2 and the Theorem 3.1 can be modified
for set-valued maps as follows.

Z,=Y,eG| x+tw+

— —_ tn(tn
=Yy, G| X+t w+

®)

. We now prove that the sequence v, has a convergent subsequence.

V.|, then z, (taking a subsequence if necessary) has a

t (tn
2

,weget ze DTZPG(x, y,w,?)(O) . It follows from (5) that

V

n

\/

n

2

Proposition 3.4. Let Y be finite dimensional,
G,G:X »2", (X;/) e gr(é),(x, y) e gr(G), and
(W,F,?)e X xY xY . Suppose that G is second-order
semi-differentiable at x relative to y in the direction
(W,F) and (4) holds. Then, (2) becomes an equality. If,

additionally, G is second-order proto-differentiable at
x relative to y in the direction (W,F), then G is
second-order proto-differentiable at x relative to y in
the direction (w,r).

Theorem 3.2. Let Y be finite dimensional,
G:XxZ—>2"be defined by
G(x,z):={yeD|zeF(xy)+K(y)}, where D is a
closed convex subset in Y, F:XxY—o2%,
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K:D—2? ,(y,E)e gr(K) ((x y),z—z) egr(F)

and (w,r,q—q)e X x(D—y)xZ. Suppose that Fis
second-order semi-differentiable at (x,y) relative to
the (W, r,q —a) and

z-z in direcction

D5 F (% y,2-2,wr,g-0) (0,0 N(-D&K (v.2.1,0) @) = {§ ) e or (G),(x v)  or(3)

Then, (3) is an equality. If, additionally, K is second-
order proto-differentiable at y relative to z in the

direction (ra) then G is second-order proto-
differentiable at (x,z) relative to y in the direction
(w,q,r).

By taking (w,r)=(0,0), the Proposition 3.4 and
the Theorem 3.2 were reduced to Proposition 2.1 and
the Theorem 3.1 in [11], respectively.

In [1], the second semi-differentiability is
employed to get (3.1). Although it is a quite strict

condition, this concept (or relative versions) is used in
2

— I
y+tnr+%vneG

(

recent papers for calculus of several Kkinds of
generalized derivatives, see [13-16]. In this paper, we
propose another hypothesis to obtain (2) without the

semi-differentiability as follows.
3.5. G,G:X 2",

and

Proposition Let

(W,F,F)e X xY xY . Suppose that G is second-order
proto-differentiable at x relative to y in the direction
(W,F) and the map g:(X ><Y)2—>X defined by

metric  subregular  at

g(a,ﬁ,j/,é')::a—yis
(x,fl, X, y,Ox) with respect to gr(G)x gr(G). Then,
(3.1) holds.

Proof. Let ve D@(x&,w,?)(u) and

Ve DZG(x, v, W, F)(u), then there exist

t, > 0*(@\/:) - (u,\_/) such that

tr —
x+tnw+5”un}

Since G is second-order proto-differentiable at x relative to y in the direction (w,?), with t above, there are

(un,vn ) - (u,\A/) such that

2

-t
y+tnr+§vn eG

|

t2
x+tnw+5”un}

According to the metric subregularity of g, there exist 4,4 >0 such that for every (ul,vl,uz,vz)e

0 (<3< (1)l (r()

d ((ul,vl,uz,vz),g‘l(oX )ﬂ(gr((_s)x gr(G))) < ud (0, 9(Uy,V,U,,V,)).

For n large enough, we have

(6)

2

[x+t W+ﬁu_§/+t F+£v_ X+t W+£U y+t f+tiv)eB ((x y) ﬂ)xB ((x y) l).
n 2 n?’ n 2 n’ n 2 n’ n 2 n XxY ! ! XxY ! 1

Thus, it follows from (3.5) that there exists (x_ny_n X0 Y, ) € gr((_B)x gr(G) with x, = x, forall n such that
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2

2

(x, Y, X, y)+tn(w,r,w,r)+5”(u_n,v_n,un,vn)—(xn,yn,Xn,yn) Sﬂ% Un—Un“,
which implies
B ) s, b
‘[y+tnr+zvn—yn]+£y+tnr+5vn—ynJ
i Ll
< y+tnr+3vn—yn + y+tnr+Evn—ynH
<2 (x,gl,x,y)+tn (W,F,W,f)+%(q,v_n,un,vn)—(x_n,y_n,xn,yn)H
< ,utf E—unu
and
et S < 030y ot (o) ) (B ) < -
Thus,
e o R »
and
x_n—x—tnw — —
—(1/2)t§ =Uu, [l < g|u, —ug]l- (8)
Setting

(Yo +va)=(y+y)-t(r+7) X _x—tw

Vo= 1/2)¢ T we

then v, —>v+v,u, —u (let N — o0 in (7) and (8) and
t? — = — t? —
y+tnr+3vn =Y., +VY, eG(xn)+G(xn):G[x+tnw+5unj,

where y:=y+y and r:=r+r.Hence, v+ve D2G(X,y,w,r)(u).

Taking (W,F, F) = (0,0,0), the Proposition 3.5 reduces to the following result.
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Corollary 3.1. Let G,G: X —2", (x,f/)egr(a),(x, y)e gr(G). Suppose that G is proto-differentiable at x
relative to y and the map g:(X ><Y)2 — X defined as in Proposition 3.5 is metric subregular at (x,fl,x, y,ox)

with respect to gr((_B)x gr(G). Then,

Da(x,;/)(u) + DG (x, y)(u) c D<§+G)<x,§/+ y)(u).
Corollary 3.1 can be used to replace the semi-differentiability of G in Proposition 2.1 in [11].

Our condition on the metric subregularity in the Proposition 3.5 is very different from the semi-differentiability
condition. However, the following example shows a case where the Corollary 3.1 works, while the Proposition 3.2
does not.

Example 3.1. Let G,G : IR — 2% be defined by

— @,XE{%lﬂEN},
G(x)=G(x) = n

{x},otherwise.

Then, we have
I, X e {iz|n € N},
n

{2x}, otherwise.

<§+G)(x) =

By calculating, one gets
DG(0,0)(u) = DbG(0,0)(u) = {u} DlG(0,0)(O) =0,

which implies that G is proto-differentiable at 0 relative to 0, but it is not semi-differentiable at O relative to 0. Thus,
Proposition 3.2 cannot be employed in this example. However, the metric subregularity of Corollary 3.1 is fulfilled.

1u>0

Indeed, let /1>0, we need to show that there exists such that for all

(1v.uv) (B, ((0,0),2)xB,. ((0.0).4))N(ar (6)xar(G)),
d ((G,\_/‘,u,\?'), g‘l(O)ﬂ(gr(a)x gr(G))) < ud (O, g(ﬁﬁ‘,u,@')).

Since (G,\?',u,@')e gr(G)x gr(G), we get u=v' and u=v'. Thus, it is enough to find z >0 such that

u—x‘+‘v'— y‘+‘u—x‘+

xae:,(?,ir)l]zéxe)(x){ \All_ y‘} = 'u‘a a u" (9)

On the other hand, we have

inf {

Xe e,(?, y)e(axG)(x)

G—x‘+‘\_/'—§/‘+‘u—x‘+‘\7'— y‘} :2inf{

xelR

G ).

Taking x = % then we get
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2inf{

xelR

G—x|+‘u—x‘}s2[

u+u
u__

u+u
‘_

Jzz‘ﬁ—u‘.

Thus, (9) is true for every x> 2. Hence, by Corollary 3.1, we get

DG(0,0)(u) + DG(0,0)(u) = D((_B + G)(o, 0)(u).

CONCLUSION

In the paper, we propose remarks for some results
in [1]. Then, by virtue of the proto-differentiability, a
weaker hypothesis than the semi-differentiability
introduced in [1], we obtain a new result on second-

order sensitivity analysis of generalized perturbation
maps.
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grant number T2016-01).

DPao ham contingent cap hai cua anh xa nhiéu

suy rong

e Nguyén Lé Hoang Anh
Truong Pai hoc Khoa hoc Ty nhién, PHQG -HCM

TOM TAT

Trong bai bdo nay, ching t6i dwa ra mét sé nhdn
xét vé cdc két qua cua [1]. Sau do, ching téi phdt trién
cdc két qud chinh lién quan dén phép tong ciia dao ham
contingent cdp hai cho dnh xa da tri va cdc dp dung

trong phdn tich g nhay ciia dnh xa nhiéu suy réng. Két
qua dat dwoe la méi va cdi thién cac két qua cua [1].
Mbét sé vi du minh hog ciing dwoc dira ra.

Tir khod: Tién khd vi cdp hai, nira kha vi cap hai, chinh quy dwéi metric, anh xa nhiéu suy réng, anh xa da tri
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