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ABSTRACT 

In the paper, we give some remarks on [1]. Then, 

we modify main results concerning the sum rule of 

second-order contingent derivatives for set-valued 

maps and its application to the sensitivity analysis of 

generalized perturbation maps. The obtained results 

are new and better than those in [1]. Some examples 

are proposed to illustrate our results. 

 Key words: second-order proto-differentiability, second-order semi-differentiability, metric subregularity, 

generalized perturbation map, set-valued map  

INTRODUCTION  

In [1], the second-order proto-differentiability and 

second-order semi-differentiability for set-valued maps 

were firsthy discussed and applied to sum rules of two 

set-valued maps. Then, the authors established second-

order sensitivity analysis of generalized perturbation 

maps as an application of sum rules. The semi-

differentiability plays an essential role in all main 

results in [1]. 

In the paper, we give some remarks on the 

Proposition 2 and Theorem 1 in [1]. On the other hand, 

a new result is proposed to avoid the semi-

differentiability by using a weaker hypothesis of the 

proto-differentiability.  

The layout of this paper is as follows. Section 2 is 

devoted to several concepts needed in the sequel. Our 

main remarks and modified results are given in Section 

3. 

PRELIMINARIES 

Throughout the paper, let X  and Y  be normed spaces. For a set-valued map : 2YF X  , the domain, 

image, and graph of F  are defined, respectively (resp for short), by 

 ( ) : | ( )dom F x X F x   ,  ( ) : | ( )im F y Y y F X   , 

 ( ) : ( , ) | ( )gr F x y X Y y F x    . 

Definition 2.1 ([2, 3]). Let S X , ( )x cl S  and w X , where ( )cl S  denotes the closure of S . 

(i) The contingent cone and the adjacent cone of S  at x  are defined by, resp, 

 ( , ) : | 0 , ,n n n nT S x u X t u u x t u S        , 

 ( , ) : | 0 , ,b

n n n nT S x u X t u u x t u S        . 
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(ii) The second-order contingent cone and the second-order adjacent cone of S  at x  in the direction w  are 

defined by, resp, 

2

2 ( , , ) : | 0 , ,
2

n

n n n n

t
T S x w u X t u u x t w u S 

         
 

, 

2

(2) ( , , ) : | 0 , ,
2

b n

n n n n

t
T S x w u X t u u x t w u S 

         
 

. 

Remark 2.1. From the Observation 1 in [4], we obtain the equivalent formulae of Definition 2.1(ii) as follows 

2
, 0 : , , 2,

( , , ) : ,

: ( ) , ( ( ) )

n

n n n n

n

n n n n n n

T S x w u X

x S x x w x x w u


   



  

 
       

  
        

 

2( )
, 0 : , , 2,

( , , ) : .

: ( ) , ( ( ) )

n

n n n nb

n

n n n n n n

T S x w u X

x S x x w x x w u


   



  

 
       

  
        

 

Definition 2.2 ([2, 3]). Let : 2YF X  , ( , ) ( )x y gr F  and ( , )w r X Y  . 

(i) The contingent derivative (the adjacent derivative) of F  at ( , )x y  is a set-valued map ( , ) : 2YDF x y X   (

( , ) : 2b YD F x y X  , resp) such that  

( ( , )) : ( ( ),( , ))gr DF x y T gr F x y  

 ( ( ( , )) : ( ( ),( , ))b bgr D F x y T gr F x y , resp). 

(ii) The second-order contingent derivative (the second-order adjacent derivative) of F at ( , )x y  in the 

direction ( , )w r  is a set-valued map 2 ( , , , ) : 2YD F x y w r X   ( 2( ) ( , , , ) : 2b YD F x y w r X  , resp) such that  

2 2( ( , , , )) : ( ( ),( , ),( , ))gr D F x y w r T gr F x y w r  

( 2( ) 2( )( ( , , , )) : ( ( ),( , ),( , ))b bgr D F x y w r T gr F x y w r , resp). 

Remark 2.2. From Definition 2.1 and Remark 2.1 is follous 

        2 ( , , , )( )D F x y w r u =

2 2

| 0 , , ,
2 2

n n

n n n n n n n

t t
v Y t u u v v y t r v F x t w u
   
             

   
 

                                    =

, 0 : , , 2,

( , ) ( ) : ( ) , ( ( ) ) , ,

( ) , ( ( ) )

n

n n n n

n

n n n n n n n

n n n n n

v Y x y gr F x x w x x w u

y y r y y r v


   



  

  

 
       

 
 
        

     
 
  

 

      (2) ( , , , )( )bD F x y w r u =

2 2

| 0 , , ,
2 2

n n

n n n n n n n

t t
v Y t u u v v y t r v F x t w u
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                                      =

, 0 : , , 2,

( , ) ( ) : ( ) , ( ( ) ) , .

( ) , ( ( ) )

n

n n n n

n

n n n n n n n

n n n n n

v Y x y gr F x x w x x w u

y y r y y r v


   



  

  

 
       

 
 
        

     
 
  

 

Definition 2.3 ([5]).  Let : 2YF X  , ( , ) ( )x y gr F  and ( , )w r X Y  . The second-order lower Dini derivative of 

F  at ( , )x y  in direction ( , )w r  is a set-valued map 2 ( , , , ) : 2Y

lD F x y w r X   that is defined by 

2 ( , , , )( )lD F x y w r u =

2 2

| 0 , , ,
2 2

n n

n n n n n n n

t t
v Y t u u v v y t r v F x t w u
   
             

   
. 

Remark 2.3. (i) By the proof similar to that of Observation 1 in [4], we get 

2 ( , , , )( )lD F x y w r u = 

, 0 : , , 2,

( ) : ( ) , ( ( ) ) , .

( ) : ( ) , ( ( ) )

n

n n n n

n

n n n n n n

n n n n n n n

v Y x dom F x x w x x w u

y F x y y r y y r v


   



  

  

 
       

 
 
        

       
 
  

 

(ii) It is obvious to see that 

2 (2) 2( , , , )( ) ( , , , )( ) ( , , , )( ).b

lD F x y w r u D F x y w r u D F x y w r u 

 

Definition 2.4 ([6, 7]).  Let : 2YF X  , 

( , ) ( )x y gr F  and ( , )w r X Y  .  

(i) The map F  is said to be second-order proto-

differentiable at x  relative to y  in the direction ( , )w r  

if 2 (2)( , , , ) ( , , , )bD F x y w r D F x y w r . 

(ii) The map F  is said to be second-order semi-

differentiable at x  relative to y  in the direction ( , )w r  

if 2 2( , , , ) ( , , , )lD F x y w r D F x y w r .    

It is easy to see that if F  is second-order semi-

differentiable then F  is second-order proto-

differentiable. 

Definition 2.5 ([1]).  Let : 2YF X  , ( , ) ( )x y gr F  

and ( , )w r X Y  . The map F  is said to be second-

order lower semi-differentiable at ( , )x y  in the 

direction ( , )w r  if for any 
n , 0n  , ( )nx dom F  

with , , 2n

n n

n


 


    , ( )n nx x w    

and ( ( ) )n n nx x w u      for some u X , there 

exists a subsequence  
i in ny F x  such that 

 
i in ny y r    and   

i i in n ny y r     is 

convergent.     

Remark 2.4. By Remark 2.3(i), if F  is second-order 

semi-differentiable then F is second-order lower semi-

differentiable. This assertion can be also implied 

immediately by Proposition 1 in [1]. 

Recall that a set-valued map : 2YF X   is called 

to be metric regular at ( , ) ( )x y gr F  if there are 

, 0r   such that for all ( , ), ( , )X Yu B x r v B y r  , 
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    1, ( ) , ( ) ,d u F v d v F u                   (1) 

where ( , )XB x r  denotes the open ball in X  centered at 

x  with radius r . 

By fixing v y  in (1), we get a weaker definition 

named by metric subregularity. The metric 

(sub)regularity plays an important role in variational 

analysis and has been applied to many topics of 

optimization, see [2, 8-10] and the references therein. 

        Inspired of the above definition, we propose the 

following concept. 

Definition 2.6. Let : 2YF X  , ( , ) ( )x y gr F and 

S X . The map F is said to be metric subregularity 

at ( , ) ( )x y gr F  with respect to S  if there are 

, 0r   such that for all ( , ) , ( , )X Yu B x r S v B y r  , 

   1, ( ) , ( ) .d u F y S d y F u   

 MAIN RESULTS 

Firstly, we recall a main proposition in [1] as 

follows. 

Proposition 3.1 (Proposition 2 in [1]). Suppose that 

: 2YG X  is second-order proto-differentiable at x  

relative to ( )y G x  in the direction  ,w r X Y  , 

: 2YG X   is second-order semi-differentiable at x  

relative to ( )y G x  in the direction  ,w r X Y   

and G  is second-order lower semi-differentiable at 

 ,x y  in the direction  ,w r . Then, the set-valued 

map : 2YG X   defined by :G G G   is second-

order proto-differentiable at x  relative to :y y y   in 

the direction  ,w r , where :r r r  , and for all 

u X , 

   2 2 2( , , , )( ) , , , ( ) , , , ( )D G x y w r u D G x y w r u D G x y w r u 

. 

Remark 3.1. (i) From Remark 2.4, the assumption on 

the second-order lower semi-differentiability of G  at 

 ,x y  in the direction  ,w r  is superfluous. 

(ii) In the proof of the Proposition 2 (see page 248 

of [1]), the authors implied that 

 2 , , , ( )v v D G x y w r u   from the second-order lower 

semi-differentiability of G . This assertion is right if 

 n ny G x . Since 

         n n n n n n n ny y y G x G x G x G x G x      

 

and G  is a set-valued map, it is not sure that 
ny  

belongs to  nG x . Thus, the conclusion of the 

Proposition 3.1 may be not true, see Example 2.1 in 

[11]. 

Hence, the  Proposition 3.1 should be presented as 

follows. 

Proposition 3.2. Let , : 2YG G X  ,

       , , ,x y gr G x y gr G   and  , ,w r r X Y Y  

. Suppose that G  is second-order semi-differentiable at 

x  relative to y  in the direction  ,w r . Then, for all 

u X , 

     2 2 2, , , ( ) , , , ( ) ( , , , )( ),D G x y w r u D G x y w r u D G x y w r u 

                                                          (2) 

where :G G G  , :y y y   and :r r r  . 

When G  is a single-valued map, (2) become an 

equality. If, additionally, G  is second-order proto-

differentiable at x  relative to y  in the direction  ,w r

, then G  is second-order proto-differentiable at x  

relative to y  in the direction ( , )w r . 

Proof   It is similar to the proof of Proposition 2 in [1].

                         

As an application of Proposition 3.1 to sensitivity 

analysis of generalized perturbation maps, Theorem 1 

in [1] should be stated by 

Theorem 3.1. Let , ,X Y Z  be normed spaces, 

: 2YG X Z  be defined by 

 ( , ) : | ( , ) ( )G x z y D z F x y K y    , where D  is a 

closed convex subset in Y , : 2ZF X Y  , 
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: 2ZK D  ,  , ( )y z gr K ,  ( , ), ( )x y z z gr F  and 

 , , ( )w r q q X D y Z     . Suppose that F  is 

second-order semi-differentiable at ( , )x y  relative to 

z z  in the direcction  , ,w r q q . Then, for all u X

, 

    2 2 2( , , ) | , , , , , ( , ) , , , ( )v T D y r p D F x y z z w r q q u v D K y z r q v      

  2 ( , , , , , )( , )D G x z y w q r u p .                  (3) 

When F  is a single-valued map, (3) is an equality. If, additionally, K  is second-order proto-differentiable at 

y  relative to z  in the direction  ,r q , then G  is second-order proto-differentiable at ( , )x z  relative to y  in the 

direction ( , , )w q r . 

Proof. The reader is referred to Theorem 1 in [1].                 

A natural question arises: which conditions ensure that (3.1) becomes an equality when all maps are set-

valued? To get the answer, we recall a concept of the TP-derivative (see [12]) of a set-valued map : 2YF X   at 

( , ) ( )x y gr F  as follows 

    ( , )( ) : | 0, , ( , ) : ,TP n n n n n n n n nD F x y u v Y t u v u v x t u x y t v F x t u           . 

The following concept is necessary for our next result. 

Definition 3.1. Let : 2YF X  , ( , ) ( )x y gr F  and ( , )w r X Y  . The asymptotic second-order TP-derivative of 

F  at ( , )x y  in the direction ( , )w r  is a set-valued map  2 , , , : 2Y

TPD F x y w r X  defined by 

 
2

, 0, , ( , ) : ,
2

( , , , )( ) : .

2 2

n n

n n n n n n

TP

n n n n

n n n n

t h
t h u v u v x t w u x

D F x y w r u v Y
t h t h

y t r v F x t w u

 
       

 
  

          

 

It is obvious to see that 2 ( , ,0,0)( ) ( , )( )TP TPD F x y u D F x y u for all u X . By virtue of the asymptotic second-

order TP-derivative, we obtain the converse inclusion of (3.1) for set-valued maps as follows. 

Proposition 3.3. Let , : 2YG G X  ,        , , ,x y gr G x y gr G   and  , ,w r r X Y Y   . Suppose that Y  is 

finite dimensional and  

        2 2, , , (0) , , , (0) 0TP TPD G x y w r D G x y w r  .                               (4) 

Then, for all u X , 

   2 2 2( , , , )( ) , , , ( ) , , , ( )D G x y w r u D G x y w r u D G x y w r u  , 

where  :G G G  , :y y y   and :r r r  . 

Proof. Let 2 ( , , , )( )v D G x y w r u , then there exist 0nt
 ,  , ( , )n nu v u v such that 

2 2 2 2

.
2 2 2 2

n n n n

n n n n n n n n

t t t t
y t r v G x t w u G x t w u G x t w u
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Thus, there are 
2

2

n

n n n

t
y G x t w u

 
   

 
 and 

2

2

n

n n n

t
y G x t w u

 
   

 
 such that 

,n n nv v v                     (5) 

where 
2 2

: , :
(1/ 2) (1/ 2)

n n n n

n n

n n

y y t r y y t r
v v

t t

   
  . We now prove that the sequence 

nv  has a convergent subsequence. 

Suppose to the contrary, i.e., nv  . By setting : /n n nz v v , then 
nz (taking a subsequence if necessary) has a 

limit point z  with 1z  . Moreover,  

   
.

2 2

n n n n n n
n

n n n n

n

t t v t t v u
y t r z y G x t w

v

  
           

  

 

Let :n n nh t v , we get  2 , , , (0)TPz D G x y w r . It follows from (5) that  

n n n

n n n

v v v

v v v
  , 

 which implies /n nv v z . On the other hand,  

   
.

2 2

n n n n n n
n n

n n n

n n

t t v t t vv u
y t r y G x t w

v v

    
                 

    

 

Thus,  2 , , , (0)TPz D G x y w r  , which contradicts (4). 

Without loss of generality, we assume that 
nv  

converges to v , then  2 , , , ( )v D G x y w r u . From (5), 

one gets 
n n nv v v v v    . Hence 

 2 , , , ( )v v D G x y w r u  , i.e., 

   2 2, , , ( ) , , , ( )v D G x y w r u D G x y w r u  .        

                             

Note that (3.3) is only a sufficient condition (not 

necessary condition) for the converse inclusion of (2), 

see Example 2 in [1]. 

It follows from the Proposition 3.3 that the 

Proposition 3.2 and the Theorem 3.1 can be modified 

for set-valued maps as follows. 

Proposition 3.4. Let Y  be finite dimensional, 

, : 2YG G X  ,        , , ,x y gr G x y gr G  , and 

 , ,w r r X Y Y   . Suppose that G  is second-order 

semi-differentiable at x  relative to y  in the direction 

 ,w r  and (4) holds. Then, (2) becomes an equality. If, 

additionally, G  is second-order proto-differentiable at 

x  relative to y  in the direction  ,w r , then G  is 

second-order proto-differentiable at x  relative to y  in 

the direction  ,w r .  

Theorem 3.2. Let Y  be finite dimensional, 

: 2YG X Z  be defined by 

 ( , ) : | ( , ) ( )G x z y D z F x y K y    , where D  is a 

closed convex subset in Y , : 2ZF X Y  , 
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: 2ZK D  ,  , ( )y z gr K     , , ,x y z z gr F 

and  , , ( )w r q q X D y Z     . Suppose that F is 

second-order semi-differentiable at ( , )x y  relative to 

z z  in the direcction  , ,w r q q  and  

      2 2, , , , , (0,0) , , , (0) 0 .TP TPD F x y z z w r q q D K y z r q   

 

Then, (3) is an equality. If, additionally, K is second-

order proto-differentiable at y  relative to z  in the 

direction  ,r q , then G  is second-order proto-

differentiable at ( , )x z  relative to y  in the direction

( , , )w q r . 

By taking ( , ) (0,0)w r  , the Proposition 3.4 and 

the Theorem 3.2 were reduced to Proposition 2.1 and 

the Theorem 3.1 in [11], respectively. 

In [1], the second semi-differentiability is 

employed to get (3.1). Although it is a quite strict 

condition, this concept (or relative versions) is used in 

recent papers for calculus of several kinds of 

generalized derivatives, see [13-16]. In this paper, we 

propose another hypothesis to obtain (2) without the 

semi-differentiability as follows. 

Proposition 3.5. Let , : 2YG G X  , 

       , , ,x y gr G x y gr G   and 

 , ,w r r X Y Y   . Suppose that G  is second-order 

proto-differentiable at x  relative to y  in the direction 

 ,w r  and the map  
2

:g X Y X   defined by 

 , , , :g        is metric subregular at 

 , , , ,0Xx y x y  with respect to    gr G gr G . Then, 

(3.1) holds. 

Proof.  Let  2 , , , ( )v D G x y w r u  and 

 2 , , , ( )v D G x y w r u , then there exist 

   0 , , ,n n nt u v u v   such that 

2 2

.
2 2

n n

n n n n

t t
y t r v G x t w u

 
     

 
 

Since G  is second-order proto-differentiable at x  relative to y  in the direction  ,w r , with 
nt  above, there are 

   , ,n nu v u v such that 

2 2

.
2 2

n n

n n n n

t t
y t r v G x t w u

 
     

 
 

According to the metric subregularity of g , there exist , 0    such that for every  1 1 2 2, , ,u v u v  

           , , , ,X Y X YB x y B x y gr G gr G    , 

                        1

1 1 2 2 1 1 2 2, , , , 0 0 , , , , .X Xd u v u v g gr G gr G d g u v u v                            (6) 

For n  large enough, we have 

     
2 2 2 2

, , , , , , ,
2 2 2 2

n n n n

n n n n n n n n X Y X Y

t t t t
x t w u y t r v x t w u y t r v B x y B x y  

 
          

 
.  

Thus, it follows from (3.5) that there exists      , , ,n n n nx y x y gr G gr G   with 
n nx x  for all n  such that 



Science & Technology Development, Vol 5, No.T20- 2017 

Trang 210  

          
2 2

, , , , , , , , , , , , ,
2 2

n n

n n n n n n n n n n n

t t
x y x y t w r w r u v u v x y x y u u          

which implies 

2 2

2 2

n n

n n n n n n

t t
y t r v y y t r v y

   
         

   
 

            
2 2

2 2

n n

n n n n n n

t t
y t r v y y t r v y        

               
2

2 , , , , , , , , , , , ,
2

n

n n n n n n n n n

t
x y x y t w r w r u v u v x y x y    

        
2

n n nt u u                  

and  

       
2 2 2

, , , , , , , , , , , , .
2 2 2

n n n

n n n n n n n n n n n n n n

t t t
x t w u x x y x y t w r w r u v u v x y x y u u          

Thus, 

        
     

 
 2

2
1/ 2

n n n

n n n n

n

y y y y t r r
v v u u

t


    
                (7) 

and  

  2
.

1/ 2

n n

n n n

n

x x t w
u u u

t


 
                                 (8) 

Setting 

     
   2 2

: , : ,
1/ 2 1/ 2

n n n
n n

n n

n n

y y y y t r r x x t w
v u

t t

      
   

 then ,n nv v v u u    (let n  in (7) and (8) and  

   
2 2

,
2 2

n n

n n n n n n n n

t t
y t r v y y G x G x G x t w u

 
         

 
 

where :y y y   and :r r r  . Hence, 2 ( , , , )( )v v D G x y w r u  .        

Taking    , , 0,0,0w r r  , the Proposition 3.5 reduces to the following result.  



TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 20, SOÁ T5- 2017 

  Trang 211 

Corollary 3.1. Let , : 2YG G X  ,        , , ,x y gr G x y gr G  . Suppose that G  is proto-differentiable at x  

relative to y  and the map  
2

:g X Y X  defined as in Proposition 3.5 is metric subregular at  , , , ,0Xx y x y  

with respect to    gr G gr G . Then, 

      , ( ) , ( ) , ( ).DG x y u DG x y u D G G x y y u     

Corollary 3.1 can be used to replace the semi-differentiability of G  in Proposition 2.1 in [11]. 

Our condition on the metric subregularity in the Proposition 3.5 is very different from the semi-differentiability 

condition. However, the following example shows a case where the Corollary 3.1 works, while the Proposition 3.2 

does not. 

Example 3.1. Let , : 2G G   be defined by 

 

2

1
, ,

( ) ( ) :

, .

x n
nG x G x

x otherwise

  
   

   



 

Then, we have 

 
 

2

1
, ,

( ) :

2 , .

x n
nG G x

x otherwise

  
   

   



 

By calculating, one gets 

       0,0 ( ) 0,0 ( ) , 0,0 (0) ,b

lDG u D G u u D G    

which implies that G  is proto-differentiable at 0 relative to 0, but it is not semi-differentiable at 0 relative to 0. Thus, 

Proposition 3.2 cannot be employed in this example. However, the metric subregularity of Corollary 3.1 is fulfilled. 

Indeed, let 0  , we need to show that there exists 
0 

 such that for all 

             2 2, ', , ' 0,0 , 0,0 ,u v u v B B gr G gr G    , 

            1, ', , ' , 0 0, , ', , ' .d u v u v g gr G gr G d g u v u v    

Since      , ', , 'u v u v gr G gr G  , we get 'u v  and 'u v . Thus, it is enough to find 0   such that 

   
   

 
, , ( )

inf ' ' .
x y y G G x

u x v y u x v y u u
  

                      (9) 

On the other hand, we have 

   
   

, , ( )

inf ' ' 2inf .
xx y y G G x

u x v y u x v y u x u x
  

            

Taking 
2

u u
x


 , then we get 
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 2inf 2 2 .
2 2x

u u u u
u x u x u u u u



  
         

 
 

 

Thus, (9) is true for every 2  . Hence, by Corollary 3.1, we get 

 (0,0)( ) (0,0)( ) (0,0)( ).DG u DG u D G G u  
 

 

CONCLUSION 

In the paper, we propose remarks for some results 

in [1]. Then, by virtue of the proto-differentiability, a 

weaker hypothesis than the semi-differentiability 

introduced in [1], we obtain a new result on second-

order sensitivity analysis of generalized perturbation 

maps.   
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Đạo hàm contingent cấp hai của ánh xạ nhiễu 

suy rộng  
 Nguyễn Lê Hoàng Anh 

Trường Đại học Khoa học Tự nhiên, ĐHQG -HCM 

TÓM TẮT 

Trong bài báo này, chúng tôi đưa ra một số nhận 

xét về các kết quả của [1]. Sau đó, chúng tôi phát triển 

các kết quả chính liên quan đến phép tổng của đạo hàm 

contingent cấp hai cho ánh xạ đa trị và các áp dụng 

trong phân tích độ nhạy của ánh xạ nhiễu suy rộng. Kết 

quả đạt được là mới và cải thiện các kết quả của [1]. 

Một số ví dụ minh hoạ cũng được đưa ra.  

 

Từ khoá: Tiền khả vi cấp hai, nửa khả vi cấp hai, chính quy dưới metric, ánh xạ nhiễu suy rộng, ánh xạ đa trị 
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