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ABSTRACT

In this paper, we study a Cauchy problem for the
heat equation with linear source in the form
u (1) =u, (xt)+ f(xt), uL,t)=e(t), u (L) =w(t), (xt)e(O,L)x(0,27).
This problem is ill-posed in the sense of Hadamard. To
regularize the problem, the truncation method is
proposed to solve the problem in the presence of noisy

Cauchy data o° and vt satisfying
lo? —o|+|w® -w|<e and that f¢ satisfying
[£2(x,)-f(x)| <& We give some error estimates
between the regularized solution and the exact solution
under some different a-priori conditions of exact
solution.
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INTRODUCTION

In this paper, the temperature u(x,t) for
(x,t) €[0,L]x[0,27] is sought from known boundary
temperature u(L,t) = ¢(t) and heat flux u, (L,t) =w/(t)
measurements satisfying the following problem:

() =u, () + f(xb), 0<x<L, 0<t<2r,
ltj/(L,[):w(I), 0<t<2r, (1)

lerev(tp, w are o<tgiwen functions (usually in
L2(0,27)) and f is a given linear heat source which
may depend on the independent variables (x,t) .

Note that we have no initial condition prescribed at
t =0 and moreover, the Cauchy data ¢ and y are
perturbed so as to contain measurement errors in the
form of the input noisy Cauchy data ¢°and “ (also in
L%(0,2x)) satisfying

o -+l -vl<e, @)

where || denotes the L2(0,27)-norm and & >0
is a small positive number representing the level of
noise.

It is well-known that, at least in the linear case, the
problem (1) has at most one solution using classical
analytical sideways continuation for the parabolic heat
equation. The existence of solution also holds, in the
case f =0. However, the problem is still ill-posed in
the sense that the solution, if it exists, does not depend
continuously on the data. Any small perturbation in the
observation data can cause large errors in the solution
u(x,t) for xe[0,L). Therefore, most classical
numerical methods often fail to give an acceptable
approximation of the solution. Thus regularization
techniques are required to stabilize the solution [3].

In recent years, the homogeneous sideways heat
equation, i.e,, f =0 in the first equation in (1), has
been researched by many authors and various methods
have been proposed, e.g. the difference regularization
method [8], the boundary element Tikhonov
regularization method [5], the Fourier method [9], the
quasi-reversibility method [1, 6], the wavelet, wavelet-
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Galerkin and spectral regularization methods [2, 7], the
conjugate gradient method [4], to mention only a few.

To the best of our knowledge, the Cauchy problem
for the linear sideways heat equation has not yet been.
Therefore, in the present paper, we propose a new
method that is based on linear integral equation to
regularize problem (1) under two a priori conditions on
the exact solution.

As will be shown in next section, for the linear
sideways heat problem (1), its solution (exact solution)
can be represented as an integral equation which
contains some instability terms. In order to restore the
stability we replace these instable terms by some
THE MAIN RESULTS

regularization ones and show that the solution of our
regularized problem converges to the solution of the
original linear problem (if such solution exists), as the
regularization parameter tends to zero. In the non-
homogeneous problem, we have many choises of
stability terms for regularization. However, in the case
of non-homogeneous problem, the main solution u is
complicated and is defined by a linear integral equation
whose the right-hand side depends on the independent
variables (x,t). In this paper, we develop a truncation
method to solve in a stable manner this linear integral
equation.

Let () denote the inner product in L*(0,27), and &> 0 represent the noise level in (2). For & € L*(0,27), we

have the Fourier series g(t):Z(g(t),exp(_im»exp(int), where <§(t),exp(fint)> :%jﬁé(t)exp(fint)dt. The

neZ

L?(0,27) -norm of & is

&l =273 |( &), exp(-int)]

nez

The principal value of +fin is

W @iy,

n >0,

" (1—i)\W, n<o0.

@)

4)

Suppose that the solution of problem (1) is represented as a Fourier series

2z

u(x,t) =>_u,(x)exp(int), with un(x)z<u(x,t),exp(—int)>:ifu(x,t)exp(—int)dt.

nez

2

0

From (1), we have the following systems of second-order ordinary differential equations:

d?u

dxzn (x)+inu, (x) = f, (%),
u, (L) = ¢, = (o(t), exp(-int)),
d
d

(L) =v, = (wO.exp(-inD), te(0,27),

O<x<lL,

te(0,27),

®)

2z
where f, (x):<f(x,t),exp(—int)>:2iI f (x,t)exp(=int)dt forall neZ.
2 0
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sinh((z - x)\/in)
Jin

sinh((L—x)\/i_) tsinh (z' x)\/ﬁ)
—\/ﬁ (L) j & f (r)dz, neZ\{0}. o

In the case n =0, multiplying the first equation in (5) by z—xand integrating both sides from x to L, we obtain

Uy (X) = Uo(L)—(L—X)Ué(L)—j(T—X) fo(r)dz.

For n e Z\{0}, multiplying the first equation in (5) by and integrating both sides from x to L, we

obtain

u, (x) = cosh (L —x)fin)u, (L) -

)
From (6) - (7) the exact form of u is given by
: sinh((L—x)«fin)  sinh((z—x)\/in) _
1) = h((L- SNy [ g () d
u(x,t) ne;éo} cosh ((L—x)/in ), T v, { N L(r)dr [exp(int)
+0(p). ¥o, o) (%), (8)

L
where O(g,,¥,, f,)(X) =@, —(L—X)y, _J.(T —-x) f,(z)dz. In afew sentences, we present a brief introduction

sinh ((L—x)/in)
Jin

are unbounded, as n tends to infinity, so in order to guarantee the convergence of the solution u

Fourier truncated method. From equation (8), it can be observed that Cosh((L - x)«/ﬁ ) and

sinh ((z - x)«fin)
T
given by (8), the coefficient (¢, ,y, ) must decay rapidly. But such a decay usually cannot occur for the measured
data (¢7,w°) . Hence, a natural way is to eliminate the high frequencies and consider the solution u for n<N_,
where N, is a positive integer; this is the so-called Fourier truncated method, and N, plays the role of a
regularization parameter satisfying I|_r)rg N, =+oo. We define the following two operators:

Q, (py, H)(x1) = ‘ Z, QN o (@.w, £)(X)exp(int)

i (g exe((L=Nin) - fexp((—x)vin)
_Z\ngl\;g _exp((l‘ X)\m)(ﬂn \/ﬁ Y, J. \/ﬁ
Qu, (2y. D = 3 Q. (0w, )(X) exp(int)

In[>N,

f ()d r}exp(int), 9)

_1 i (1 i exp(—(L—x)\in) L exp(—(z - x)\/in)
-5 [ert L, ool

f, (z)d z’} exp(int). (10)

To approximate u, we introduce the regularized solution
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. ~ =y sinh((L=x)in) o tsinh((z-x)in) . ,
uNg(x,t)—n<g;n¢o{cosh((L X)\/m)% Tl/ln ‘[T fe(r)dz [exp(int)

+Qy (@".v*, F9)(X ) +0(p5, w5, T3 )(X).

Our these results would be applied after any necessary minor modifications have been made.
Lemma 1. For n€ Z\{0} and [n| <M, we have the following inequalities:

E(Lx)],(ﬂ)
M
—(r— X)].

Proof. For ne Z\{0}, n< M, one has
exp (L—x)fin +exp —(L—x)«/ﬁ|
|

11)

|cosh (L—x)ﬁ|§exp

|sinh (r—x)\/ﬁ|§exp

|cosh (L—x)in | =

2
§%|exp (L—x)«/ﬁ|+%|exp —(L—x)ﬁ|<%exp[ |—gl(L—x) +%exp[— %(L—x)]
<%exp[\/¥(LX)]+% <exp \/g(Lx) :
and
|sinh (L—x)ﬁ |_ exp (L—x)ﬁ —exp (L—x)ﬁ|
| n 2.fin |
lexp (L—x)Nin | [exp —(L—x)vin | 1 [F ] 1 [ F ]
< Z\H + ZJW SEexp ?(L—x) +§exp - ?(L—x)
1 M 1 M
siexp[\E(L—X)]+§ <exp \E(L—x)],
as required.
Lemma 2. For |n[ > N_, we have
. 1 U’ (x)
Qx,.n (2, .f)(X)=—(un(X)— g j
.\ Y > Jin ”
Proof. Differentiating (6) with respect to x gives
u) N _cosh((L—x)\/H) _Lcosh((z-—x)\/ﬁ)
N =sinh((L-x)v/in) g, N . j N f (r)dz. .

Adding (15) to (6), we infer that
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0,0~ _ (i), - 2L, _jorlle D) g,

from which complete the proof.

The following theorem comes from the regularization u,, provides the error estimates in the L*-norm when the
exact solution belongs to new spaces G;, (s > 0) . Here GS is presented by

G:(0,27) _{56 L? (O, Zn):ZInI exp ovf2Inl |<§(t),exp(—int)>| <ool>,

nez (16)
and this norm is given by
S . 2
s (02 :\/&Inl2 exp o2In| |<§(t),exp(—lnt)>L2(0Y2ﬂ)| . an
For a Hilbert space X, we denote
L*(0,L; X) = {5 :[0,L]— X ‘esssup||§(r)||X < oo]»,
0<r<L (18)
and
"é:”L oLx) = esssup||§(r)||x '
0<r<L (19)

Theorem 1. Assume that problem (1) has a weak solution u e C([O,T 1; (0, 27:)). Choose N, >0 such that

lim Nt = I_ing[gexp(L ng H =0.
£ & 2 (20)

(a). Suppose that the problem (1) has a solution u satisfying

<
Hu (L6l (0.22) +HU (L6l (027) = B,
(21)
for some known constant E, > 0. Then
N (%) —u(x, )" <JP? +27E} exp[—x )
(22)
6Ls?| ex L.fZN 1
where P:J6g exp(L 2N ) [ p( ) ]
(b). Suppose that the problem (1) has a solutlon u satisfying
<
OLGLOZ;T OLG(ozn))‘EZ’
(23)
for r >0 and some known constant E, >0. Then
N (6) = u(x,.)” < Q/PZ +27N_*E? exp[—x ’Nf j
2 (24)

2

Corollary 1. Let us choose N, = >
(L+6)

|n2(1j for 56 >0 then
&
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Estimate in (22) is calculated as follows

U, (6) =Gk, ) < R + 227 647, (25)
26 25 -
ool TR

L+o \e
2. Estimate in (24) is calculated as follows

Uy, (><,~)—U(X.-)||sJRHz;{L‘/E |n(lﬂ E2 pioo,

+0 &

(26)
Proof of the Theorem 1. The proof is divided into two parts.
Part a. Estimate the error (22) between the regularization u,ﬂg and the exact solution u with a priori (21).
We rewrite u as
: sinh((L—x)«fin)  &sinh((z—x)fin) .
u(x,t) = cosh (L—x)\/m o, ————————Y, — | ——————="—= 1, (r)dz |exp(int)
n<g;n¢0|: ( ) \/m JX. \/m
+0(0, ¥, 1)(X) +Qx_ (@, (X ) +Qy (@, F)(X1). @7
From (11) and (27), thanks to Parseval’s relation, we obtain
3 2 3 2 - & & & - 2
up, (6) UG =27 X Jus 00U, (9 +47 X |Qu (9w (0 - QL (2w, ()|
Inl<N, ,n=0 Inl>N,
=J;(X) =J,(x)
e e 2 . 2
+27 |0} i 10 = Oy, o, )| + 47 3 Q) (2w, HV)|
In[>N,.
=300 :
=300 (28)
We now apply Lemma 1 and using the Holder’s inequality, we have
sinh (L —)+in)
—\21 . 2 |sin —X)4/in . 2
L<er Y {Icosh((L—x)ﬁ)l o g [+ e, ]
Inl<N, ,n=0 | \m |
2
esinh((z —x)+/in
+67 jM(f;(f)—fn(r))dr
Inl<N, ,n=0 | x \/ﬁ
2 2
<6r Y [exp((L-xy2N, )|o: o[ +exp((L-x)y2N, )|y -y, |
Inl<N, ,n=0
L
+67 Y {(L— x)jexp((r- 2N, )|t (2) - 1. @) dr}
[nl<N . ,n#0
: X (29)

where we have used the elementary inequality (a+b+c)? <3(a? +b? +c?).
Similarly, the second equation J, (x) writes
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\]z(x)§127z—HZ: |exp(—(L—x)\/ﬁ)2 . _¢n|2+|exp(_(\|—iﬁ;X)ﬁ)| |er _l//n|2]

RS iexp(—(r—x)«/ﬁ ) 2

2= (He-fE@)d

<127y [exp((L—x),fZNs) ¢ —gon|2 +exp((L—x)4/2Ns) c —://nﬂ
Inl>N,
B L
+127 Y | (L-x)[exp((c = x){2N, )| £ (2) - fn(r)|2dr}.
In[>N
L (30)
Thanks to Holder’s inequality and using the basic inequality e® >a, Va >0, we deduce that
3,(x) =6z{ -0 Sy ~f (r)lzdr}
<67 | exp((L-X){2N, )|of ~ | +exp((L VN, e vl |
+67{(L—x).|.exp((r—x)1/2Ng) o }
" (31)
Using Lemma 2, easy calculations show that
2 u (X)
J,(X)=4r v (o, )YX)| =4 (u (x)—— j
* >N, | \ngN: Jin
<z Z exp( xf)(exp(x m)u xX)- exp(x m) o )j
\n\>N ’\F
<3 [exp (ol foxp O, ) —explcyim) 4o (32)
Inl>N, \/m
s27zexp(— ){ > exp(L |n|)|un(x)| +Y exp(Ly/2Inf)| =22 Uy () }
InI>N, Inl>N, \/_
<2z exp(—x 2N, )["U|||_*(o,|_;sf(o,zﬁ)) +||UX||i°°(o,L;GE(o,2zz))]'
Combining (28), (29), (30), (31) and (32) we infer
Jlug, () —u(x, )| <Bexp((L-x)|2N, )[lqu —ol +ll* —w| + (- x)jexp((r— L2N, )| £z, - f (2,9 d r}
+27T9Xp(—X\f2NE )|:||U||L°° (0.L:60(0,27)) +||U " OLGL(OM))J
<6exp((L-x)42N;, ){52 + ngjexp((r— L)JJ2N, )dr}+2ﬂ'exp(—x1/2Ng )E?
<6exp((L x)q}ZN )[ (1 exp((x L)\2N, ))}+2ﬂexp(—x ZNS)Ef,(33)
2 (33)

which can be rewritten as
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%
, 6Ls? | exp(L(2N, ) -1 ) N
uﬁg(Xv)—u(x,-)H{Ge exp(L 2Ng)+ [ \;ﬁ ) j|+27TE1:l exp[—x /7)

(34)

Part (b). Estimate the error (24) between the regularization u;g and the exact solution u with a priori (23).

By an argument analogous to the previous one, the estimates of J, (x), J,(x), J;(x) in the proof of part (&) remains
valid. Also, replace J,(x) by following estimate

. 2 1 u’ (x) :
‘]4 =4 N, ,n \%  f =4 Pyl _n_-
® zszNth, (@, F)(X)) nmbzmz[u ) Jﬁj
<z 3 Il exp(-x @ " exp (<) u, ()~ Inl” exp (x4 —“3“)}2
ﬂ'mszﬁ n exp( X |n) n exp(x |n)u (x)—In exp(x\/ﬁ) Jin

2

<z 3 Il [exp(-xdin)|

In[>N,

Inl" exp (x/im)u, (x) —Inl" exp (xfim) 2
Jin

’ 2
<27zN* exp(—x 2N, ){ > Inl” exp(L 2|n|)|un(x)|2 +> Inl* exp(L/2Inl) un_(x) :l
Inl>N, n>N, In
< 27Z'N;2r eXp(—X,fZN‘g )|:"U"ﬁ”(0,L;G[(0,2”)) +||Ux ||i’°(0,L;G[(O,2/r)):|' (35)
Combining (28), (29), (30), (31) and (35), we get

We obtain
Jlug, (x.) —u(x )| < 6exp((L-x)\2N, ){Iqu —ol +ly* —wl + (=0 [exp((z—L)J2N, [t (z, )~ f (r,-)llzdr}

+27N?" eXp(—X\/Z N, )|:"U”i”(0,L;G{(O.27I)) +u, "i« (o,LiGr (0.2”>):|

SGexp((L—x)1/2N£)|:82+ngjexp((r—L)a/ZNg)dz':|+27rN;2r exp(—x2N, ) EZ
2 L i —-2r 2
SGexp((L—x),/ZNS){g +J;T(l—exp((x—L),/ZNe))}+27rNg exp(—xJZNg)Ez. (36)

2

, — — %
Hu,’;‘,h (X,-) —u(x, -)HS |:682 exp(L«/ZNs )+ oLe I:exp(L 2\;|2£'37exp(x 2N, ):I + 27rNé_2'E22:| exp[fx &j
@37)
This completes the proof of the theorem.
CONCLUSION

In this paper, the Cauchy problem for the heat
equation has been solved by employing the truncation

method for a resulting linear integral equation.
Convergence and stability estimates, as the
regularization parameter tends to zero, are proved.
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Chinh hoa bai toan Cauchy cho phuong trinh

AN
nhiét
e V4 Vin Au
Truong Pai hoc Khoa hoc Ty nhién, PHQG-HCM
Trudng Pai hoc K§ thuat Cong nghé Can Tho
e Nguyén Hoang Tuin
Trudng Pai hoc Su pham Thanh ph Hd Chi Minh

TOM TAT
Trong bai bao nay, chung téi nghién cuu bai toan
Cauchy cho phwong trinh nhiét véi ham nguon tuyén

tinh thoa phuong trinh:

u (1) =u, (xt)+ f(xt), uL,t)=e(t), u (L) =w(t), (xt)e(OL)x(0,27).

Day la bai toin khéng chinh theo nghia cua
Hadamard. Pé chinh héa bai todn nay, phiong phdp
chat cut dwoc dé xudt dé gidgi quyét bai todn trong

truong hop dir lieu Cauchy ¢,y va ham nguon f bj
nhiéu  béi @, w° VA f¢  théa man
o — |+’ —vl < va ) - )<
Chung t6i dua ra cdac danh gid sai so giita nghiém

chinh héa va nghiém chinh xac dwoi mot s6 tinh tron
khac nhau cua nghiém chinh xac.

Tir khéa: phuong trinh Eliptic, bai todan khong chinh, bai toan Cauchy, phuong phdp chinh héa, phuong

phap chat cut
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