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ABSTRACT 

In this paper, we study a Cauchy problem for the 

heat equation with linear source in the form 

( , ) ( , ) ( , ), ( , ) ( ), ( , ) ( ), ( , ) (0, ) (0,2 ).t xx xx t x t f x t L t t L t t x t L       u u u u

This problem is ill-posed in the sense of Hadamard. To 

regularize the problem, the truncation method is 

proposed to solve the problem in the presence of noisy 

Cauchy data   and   satisfying 
          and that f   satisfying 

( , ) ( , ) .f x f x      We give some error estimates 

between the regularized solution and the exact solution  

under some different a-priori conditions of exact 

solution. 

 Key words: elliptic equation, ill-posed problem, cauchy problem, regularization method, truncation method 

INTRODUCTION 

In this paper, the temperature ( , )x tu  for 

( , ) [0, ] [0,2 ]x t L   is sought from known boundary 

temperature ( , ) ( )L t tu and heat flux ( , ) ( )x L t tu
 

measurements satisfying the following problem: 
( , ) ( , ) ( , ), 0 , 0 2 ,

( , ) ( ), 0 2 ,

( , ) ( ), 0 2 ,

t xx

x

x t x t f x t x L t

L t t t

L t t t



 

 

     


  
   

u u

u

u

     (1) 

where ,   are  given functions (usually in 
2 (0,2 )L  ) and f  is a given linear heat source which 

may depend on the independent variables ( , )x t . 

Note that we have no initial condition prescribed at 

0t  and moreover, the Cauchy data   and   are 

perturbed so as to contain measurement errors in the 

form of the input noisy Cauchy data  and  (also in 
2 (0,2 )L  ) satisfying  

,     
                                              (2)

 

where   denotes the 2 (0,2 )L  -norm and 0  

is a small positive number representing the level of 

noise. 

It is well-known that, at least in the linear case, the 

problem (1) has at most one solution using classical 

analytical sideways continuation for the parabolic heat 

equation. The existence of solution also holds, in the 

case 0f . However, the problem is still ill-posed in 

the sense that the solution, if it exists, does not depend 

continuously on the data. Any small perturbation in the 

observation data can cause large errors in the solution 

( , )x tu  for [0, ).x L  Therefore, most classical 

numerical methods often fail to give an acceptable 

approximation of the solution. Thus regularization 

techniques are required to stabilize the solution [3]. 

In recent years, the homogeneous sideways heat 

equation, i.e., 0f
 
in the first equation in (1), has 

been researched by many authors and various methods 

have been proposed, e.g. the difference regularization 

method [8], the boundary element Tikhonov 

regularization method [5], the Fourier method [9], the 

quasi-reversibility method [1, 6], the wavelet, wavelet-
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Galerkin and spectral regularization methods [2, 7], the 

conjugate gradient method [4], to mention only a few. 

To the best of our knowledge, the Cauchy problem 

for the linear sideways heat equation has not yet been. 

Therefore, in the present paper, we propose a new 

method that is based on linear integral equation to 

regularize problem (1) under two a priori conditions on 

the exact solution. 

As will be shown in next section, for the linear 

sideways heat problem (1), its solution (exact solution) 

can be represented as an integral equation which 

contains some instability terms. In order to restore the 

stability we replace these instable terms by some 

regularization ones and show that the solution of our 

regularized problem converges to the solution of the 

original linear problem (if such solution exists), as the 

regularization parameter tends to zero. In the non-

homogeneous problem, we have many choises of 

stability terms for regularization. However, in the case 

of non-homogeneous problem, the main solution u is 

complicated and is defined by a linear integral equation 

whose the right-hand side depends on the independent 

variables ( , ).x t  In this paper, we develop a truncation 

method to solve in a stable manner this linear integral 

equation. 

THE MAIN RESULTS 

Let  denote the inner product in 2 (0,2 ),L   and 0  represent the noise level in (2). For 2 (0,2 ),L  we 

have the Fourier series ( ) ( ),exp( ) exp( ),
n

t t int int   where 

2

0

1
( ),exp( ) ( )exp( )d .

2
t int t int t



 


 The 

2 (0,2 )L  -norm of   is  

22
2 ( ),exp( ) .

n

t int  
                                                                                    (3)

 

The principal value of in is  

(1 ) , 0,
2

(1 ) , 0.
2

ni n
in

ni n
                                                                                    (4)

 

Suppose that the solution of problem (1) is represented as a Fourier series 

( , ) ( )exp( ),n

n

x t x intu u  with 

2

0

1
( ) ( , ),exp( ) ( , )exp( )d .

2
n x x t int x t int t




u u u  

From (1), we have the following systems of second-order ordinary differential equations: 
2

2

d
( ) ( ) ( ), 0 ,

d

( ) ( ),exp( ) , (0,2 ),

d
( ) ( ),exp( ) , (0,2 ),

d

n

n n

n n

n

n

x in x f x x L
x

L t int t

L t int t
x

  

  


    


   

    


u
u

u

u

                                                                         (5)

 

where 

2

0

1
( ) ( , ),exp( ) ( , )exp( )d

2
nf x f x t int f x t int t




     for all .n  
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For \{0},n  multiplying the first equation in (5) by 
 sinh ( )x in

in

 
 and integrating both sides from x to L, we 

obtain 

 
   sinh ( ) sinh ( )

( ) cosh ( ) ( ) ( ) ( )d , \{0}.

L

n n n n

x

L x in x in
x L x in L L f n

in in


 

 
    u u u

                   (6)

 

In the case 0,n  multiplying the first equation in (5) by x  and integrating both sides from x to L, we obtain 

0 0 0 0( ) ( ) ( ) ( ) ( ) ( )d .

L

x

x L L x L x f      u u u

                                                                         (7)         

 

From (6) - (7) the exact form of u is given by 

 
   

\{0}

0 0 0

sinh ( ) sinh ( )
( , ) cosh ( ) ( )d exp( )

( , , )( ),

L

n n n

n x

L x in x in
x t L x in f int

in in

f x


   

 



  
    

  



 u

       (8)

 

where 0 0 0 0 0 0( , , )( ) ( ) ( ) ( )d .

L

x

f x L x x f             In a few sentences, we present a brief introduction 

Fourier truncated method. From equation (8), it can be observed that  
 sinh ( )

cosh ( ) ,
L x in

L x in
in


  and 

 sinh ( )x in

in

 
 are unbounded, as n tends to infinity, so in order to guarantee the convergence of the solution u 

given by (8), the coefficient ( , )n n  must decay rapidly. But such a decay usually cannot occur for the measured 

data ( , )n n

   . Hence, a natural way is to eliminate the high frequencies and consider the solution u for n N , 

where N  is a positive integer; this is the so-called Fourier truncated method, and N  
plays the role of a 

regularization parameter satisfying 
0

lim .N


 

 

We define the following two operators:
 
 

                      

 
   

 
 

,

( , , )( , ) ( , , )( ) exp( )

exp ( ) exp ( )1
exp ( ) ( )d exp( ), (9)

2

( , , )( , ) ( , , )( ) exp( )

exp ( )1
exp ( )

2

+ +

N N ,n

n N

L

n n n

n N x

N N n

n N

n

f x t f x int

L x in x in
L x in f int

in in

f x t f x int

L x in
L x in

in

 





 



   


   

   







 





  
    

  



 
   



 



Q Q

Q Q

 exp ( )
( )d exp( ). (10)

L

n n

n N x

x in
f int

in



  



  
 

  
 

 

 

To approximate u, we introduce the regularized solution 
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, 0

0 0 0

sinh ( ) sinh ( )
( , ) cosh ( ) ( )d exp( )

( , , )( , ) ( , , )( ).

L

ε

N n n n

n N n x

N

L x in x in
x t L x in f int

in in

f x t f x







  

     


   

   

 



  
    

  

 

 u

Q
  (11)

 

Our these results would be applied after any necessary minor modifications have been made. 

Lemma 1. For \{0}n  and ,n M  we have the following inequalities:

 

cosh ( ) exp ( ) , (12)
2

sinh ( ) exp ( ) .
2

M
L x in L x

M
x in x 

                                                                          (13)

 

Proof. For \{0}, ,n n M   one has 

exp ( ) exp ( )
cosh ( )

2

1 1 1 1
exp ( ) exp ( ) exp ( ) exp ( )

2 2 2 2 2 2

1 1
exp ( ) exp ( ) ,

2 2 2 2

L x in L x in
L x in

n n
L x in L x in L x L x

M M
L x L x

 

and 

sinh ( ) exp ( ) exp ( )

2

exp ( ) exp ( ) 1 1
exp ( ) exp ( )

2 2 2 22 2

1 1
exp ( ) exp ( ) ,

2 2 2 2

L x in L x in L x in

in in

L x in L x in n n
L x L x

n n

M M
L x L x

 

as required.                       

             

       

Lemma 2. For ,n N we have  

,

( )1
( , , )( ) ( ) .

2

n

N n n

x
f x x

in


 
 

  
 

u
Q u

                                                                    (14)

 

Proof.  Differentiating (6) with respect to x gives 

 
   cosh ( ) cosh ( )( )

sinh ( ) ( )d .

L

n

n n n

x

L x in x inx
L x in f

in in in


   

  
     

u

                                       (15)

 

Adding (15) to (6), we infer that 
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   exp ( ) exp ( )( )

( ) exp ( ) ( )d ,

L

n

n n n n

x

L x in x inx
x L x in f

in in in


   

  
     

u
u  

from which complete the proof.                      

               

The following theorem comes from the regularization 
N

u provides the error estimates in the 2L -norm when the 

exact solution belongs to new spaces , ( 0)s sG . Here s

G is presented by 

222(0,2 ) (0,2 ) : exp 2 ( ),exp( ) ,
ss

n

L n n t int     G

                                                      (16) 

and this norm is given by  

2

22

((0,2 ) (0,2 )
exp 2 ( ),exp( ) .s

s

L
n n t int

  
  

G
                                                            (17)

 

For a Hilbert space X, we denote 

               
0

(0, ; ) :[0, ] esssup ( ) ,
X

L

L L X L X


  

                                                                               (18)

 

and  

(0, ; )
0

esssup ( ) .
L L X X

L

  
                                                                                       (19) 

Theorem 1. Assume that problem (1) has a weak solution  2[0, ]; (0,2 )C T L u . Choose 0N   such that  

1

0 0
lim lim exp 0.

2

N
N L 


 



 

  
   

                                                                     (20)

 

(a). Suppose that the problem (1) has a solution u satisfying 

   0 0 10, ; (0,2 ) 0, ; (0,2 )
,

L L
xL L L L

E
   

G G
u u

                                                                                  (21)
 

for some known constant 
1 0.E   Then  

2 2

1( , ) ( , ) 2 exp ,
2

ε

N

N
x x P E x




 

      
 

u u

                                                                       (22)

 

where  
 2

2
6 exp 2 1

6 exp 2 .
2

L L N
P L N

N










  
    

(b). Suppose that the problem (1) has a solution u satisfying  

    20, ; (0,2 ) 0, ; (0,2 )
,r r

L L
xL L L L

E
   

G G
u u

                                                                           (23)
 

for 0r   and some known constant 
2 0.E   Then  

                
2 2 2

2( , ) ( , ) 2 exp .
2

ε r

N

N
x x P N E x




 

 
      

 
u u

                                                                              (24)

 

Corollary 1. Let us choose 
 

2

2

2 1
lnN

L




 
  

 
 for 0   then 
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Estimate in (22) is calculated as follows 

2 2

1( , ) ( , ) 2 ,
x

ε L
N x x R E


      u u
                                               (25)

 

where  
12 2

2 2 1
6 6 ln .L LR L

L

 

   
 



 
  

     
   

 

2. Estimate in (24) is calculated as follows 

4

2 2

2

2 1
( , ) ( , ) 2 ln .

r
x

ε L
N x x R E

L

 
 




  

       
   

u u

                                            (26)

 

Proof of the Theorem 1. The proof is divided into two parts. 

Part a. Estimate the error (22) between the regularization N


u  and the exact solution u  with a priori (21). 

We rewrite u  as 

 
   

, 0

0 0 0

sinh ( ) sinh ( )
( , ) cosh ( ) ( )d exp( )

( , , )( ) ( , , )( , ) ( , , )( , ).

L

n n n

n N n x

+

N N

L x in x in
x t L x in f int

in in

f x f x t f x t



 


   

     

 



  
    

  

  

 u

Q Q
      (27)

 

From (11) and (27), thanks to Parseval’s relation, we obtain 

   

1 2

3

2 2 2

,

, 0

: ( ) : ( )

2

0 0 0

: ( )

( , ) ( , ) 2 ( ) ( ) 4 ( , , )( ) ( , , )( )

2 ( , , )( ) ( , , )( ) 4

N N n n N ,n N ,n

n N n n N

J x J x

n n n

J x

x x x x f x f x

f x f x

   

 

    

  

     

    

 

  

 



      

   

 u u u u Q Q

4

2

: ( )

( , , )( ) .N ,n

n N

J x

f x




  




 +
Q

 (28)

 

We now apply Lemma 1 and using the Holder’s inequality, we have 

 
 

 
 

   

 

2

2 2 2

1

, 0

2

, 0

2 2

, 0

2

sinh ( )
( ) 6 cosh ( )

sinh ( )
6 ( ) ( ) d

6 exp ( ) 2 exp ( ) 2

6 ( ) exp ( ) 2 ( ) ( ) d

n n n n

n N n

L

n n

n N n x

n n n n

n N n

L

n n

x

L x in
J x L x in

in

x in
f f

in

L x N L x N

L x x N f f







 



 

 





    


   

    

    

 

 

 

 
     

  


 

       


   



 




, 0

,
n N n 


 
 


                (29)

 

where we have used the elementary inequality 2 2 2 2( ) 3( ).a b c a b c      

Similarly, the second equation 
2 ( )J x writes 



Science & Technology Development, Vol 5, No.T20- 2017 

Trang 190 

 
 

 
 

   

 

2

2 2 2

2

2

2 2

2

exp ( )
( ) 12 exp ( )

exp ( )
12 ( ) ( ) d

12 exp ( ) 2 exp ( ) 2

12 ( ) exp ( ) 2 ( ) ( ) d

n n n n

n N

L

n n

n N x

n n n n

n N

L

n n

n N x

L x in
J x L x in

in

x in
f f

in

L x N L x N

L x x N f f







 



 

 





    


   

    

    









 
       

  

 
 

       

 
    

 



 



 .



                    (30)

 

Thanks to Holder’s inequality and using the basic inequality , 0,ae a a    we deduce that 

   

 

2 2 2
2 2

3 0 0 0 0 0 0

2 2

0 0 0 0

2

0 0

( ) 6 ( ) ( ) ( ) ( ) ( ) d .

6 exp ( ) 2 exp ( ) 2

6 ( ) exp ( ) 2 ( ) ( ) d .

L

x

L

x

J x L x L x x f f

L x N L x N

L x x N f f

  

 

 





        

    

    

 
         

 

       

 
    

 




                    (31)

 

Using Lemma 2, easy calculations show that 

     

     

     

2
2

4 ,

2

2
2

2

2

( )1
( ) 4 ( , , )( ) 4 ( )

2

( )
exp exp ( ) exp

( )
exp exp ( ) exp

( )
2 exp 2 exp 2 ( ) exp 2

n

N n n

n N n N

n

n

n N

n

n

n N

n

n

n N n N

x
J x f x x

in

x
x in x in x x in

in

x
x in x in x x in

in

x
x N L n x L n

in



 





 



   









 





 

 
   

 

 
   

 


  

 
  

 





 

u
Q u

u
u

u
u

u
u

     
0

0

2 2

0, ; (0,2 ) 0, ; (0,2 )
2 exp 2 .

L
L

L L x L L
x N  

 



 
  

   
 G G

u u

                   (32) 

Combining (28), (29), (30), (31) and (32) we infer 

   

     

     

0
0

2 2 2 2

2 2

0, ; (0,2 ) 0, ; (0,2 )

2 2 2

1

( , ) ( , ) 6exp ( ) 2 ( ) exp ( ) 2 ( , ) ( , ) d

2 exp 2

6exp ( ) 2 exp ( ) 2 d 2 exp 2

6exp ( )

L
L

L

N

x

L L x L L

L

x

x x L x N L x L N f f

x N

L x N L L N x N E

L x



   

 

 

  

       



    




 
              

 

   
 

 
      

 

 





G G

u u

u u

      
2

2 2

12 1 exp ( ) 2 2 exp 2 , (33)
2

L
N x L N x N E

N
  




 
 

     
  

       

(33) 

which can be rewritten as 
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1
22

2 2

1

6 exp 2 1
( , ) ( , ) 6 exp 2 2 exp .

22
N

L L N N
x x L N E x

N


 





 

             
    

u u

             

(34) 

Part (b). Estimate the error (24) between the regularization N


u  and the exact solution u  with a priori (23). 

By an argument analogous to the previous one, the estimates of 
1 2 3( ), ( ), ( )J x J x J x in the proof of part (a) remains 

valid. Also, replace 
4 ( )J x by following estimate  

     

     

   

2
2

4 ,

2

2
2

2

2 22

( )1
( ) 4 ( , , )( ) 4 ( )

2

( )
exp exp ( ) exp

( )
exp exp ( ) exp

2 exp 2 exp 2 ( )

n

N n n

n N n N

r r r n

n

n N

r r r n

n

n N

rr

n

n N

x
J x f x x

in

x
n x in n x in x n x in

in

x
n x in n x in x n x in

in

N x N n L n x



 





 

   









 













 
   

 

 
   

 


  

  

 





u
Q u

u
u

u
u

u  

     

2
2

2 22
0, ; (0,2 ) 0, ; (0,2 )

( )
exp 2

2 exp 2 .r
rL
L

r n

n N

r
L L x L L

x
n L n

in

N x N

 

  
 







 
 
  

   
 

 

G G

u

u u

       

(35)

 

Combining (28), (29), (30), (31) and (35), we get 

We obtain 

   

     

     

2 2 2 2

2 22
0, ; (0,2 ) 0, ; (0,2 )

2 2 2 2

2

( , ) ( , ) 6exp ( ) 2 ( ) exp ( ) 2 ( , ) ( , ) d

2 exp 2

6exp ( ) 2 exp ( ) 2 d 2 exp 2

r
rL
L

L

N

x

r
L L x L L

L

r

x

x x L x N L x L N f f

N x N

L x N L L N N x N E



   
 

  

   

       



    








 
              

 

   
 

 
      

 





G G

u u

u u

      
2

2 2 2

26exp ( ) 2 1 exp ( ) 2 2 exp 2 . (36)
2

rL
L x N x L N N x N E

N
   




   

       
  

 
   

1
22

2 2 2

2

6 exp 2 exp 2
( , ) ( , ) 6 exp 2 2 exp

22

r

N

L L N x N N
x x L N N E x

N


  
 




  

             
    

u u

       

(37)

This completes the proof of the theorem.                                                                                                                        

 

CONCLUSION 

In this paper, the Cauchy problem for the heat 

equation has been solved by employing the truncation  

 

 

 

method for a resulting linear integral equation. 

Convergence and stability estimates, as the 

regularization parameter tends to zero, are proved.  
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Chỉnh hóa bài toán Cauchy cho phương trình 

nhiệt 
 Võ Văn Âu 

Trường Đại học Khoa học Tự nhiên, ĐHQG-HCM  

Trường Đại học Kỹ thuật Công nghệ Cần Thơ 

 Nguyễn Hoàng Tuấn 

Trường Đại học Sư phạm Thành phố Hồ Chí Minh 

TÓM TẮT 

Trong bài báo này, chúng tôi nghiên cứu bài toán 

Cauchy cho phương trình nhiệt với hàm nguồn tuyến 

tính thỏa phương trình:

( , ) ( , ) ( , ), ( , ) ( ), ( , ) ( ), ( , ) (0, ) (0,2 ).t xx xx t x t f x t L t t L t t x t L       u u u u

Đây là bài toán không chỉnh theo nghĩa của 

Hadamard. Để chỉnh hóa bài toán này, phương pháp 

chặt cụt được đề xuất để giải quyết bài toán trong 

trường hợp dữ liệu Cauchy , 
 
và hàm nguồn f bị 

nhiễu bởi ,  
 

và f   thỏa mãn 
        

 
và ( , ) ( , ) .f x f x      

Chúng tôi đưa ra các đánh giá sai số giữa nghiệm 

chỉnh hóa và nghiệm chính xác dưới một số tính trơn 

khác nhau của nghiệm chính xác. 

 Từ khóa: phương trình Eliptic, bài toán không chỉnh, bài toán Cauchy, phương pháp chỉnh hóa, phương 

pháp chặt cụt 
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